903 resultados para Segmentation cardiaque
Resumo:
L’échocardiographie et l’imagerie par résonance magnétique sont toutes deux des techniques non invasives utilisées en clinique afin de diagnostiquer ou faire le suivi de maladies cardiaques. La première mesure un délai entre l’émission et la réception d’ultrasons traversant le corps, tandis que l’autre mesure un signal électromagnétique généré par des protons d’hydrogène présents dans le corps humain. Les résultats des acquisitions de ces deux modalités d’imagerie sont fondamentalement différents, mais contiennent dans les deux cas de l’information sur les structures du coeur humain. La segmentation du ventricule gauche consiste à délimiter les parois internes du muscle cardiaque, le myocarde, afin d’en calculer différentes métriques cliniques utiles au diagnostic et au suivi de différentes maladies cardiaques, telle la quantité de sang qui circule à chaque battement de coeur. Suite à un infarctus ou autre condition, les performances ainsi que la forme du coeur en sont affectées. L’imagerie du ventricule gauche est utilisée afin d’aider les cardiologues à poser les bons diagnostics. Cependant, dessiner les tracés manuels du ventricule gauche requiert un temps non négligeable aux cardiologues experts, d’où l’intérêt pour une méthode de segmentation automatisée fiable et rapide. Ce mémoire porte sur la segmentation du ventricule gauche. La plupart des méthodes existantes sont spécifiques à une seule modalité d’imagerie. Celle proposée dans ce document permet de traiter rapidement des acquisitions provenant de deux modalités avec une précision de segmentation équivalente au tracé manuel d’un expert. Pour y parvenir, elle opère dans un espace anatomique, induisant ainsi une forme a priori implicite. L’algorithme de Graph Cut, combiné avec des stratégies telles les cartes probabilistes et les enveloppes convexes régionales, parvient à générer des résultats qui équivalent (ou qui, pour la majorité des cas, surpassent) l’état de l’art ii Sommaire au moment de la rédaction de ce mémoire. La performance de la méthode proposée, quant à l’état de l’art, a été démontrée lors d’un concours international. Elle est également validée exhaustivement via trois bases de données complètes en se comparant aux tracés manuels de deux experts et des tracés automatisés du logiciel Syngovia. Cette recherche est un projet collaboratif avec l’Université de Bourgogne, en France.
Resumo:
In this paper, we propose an unsupervised segmentation approach, named "n-gram mutual information", or NGMI, which is used to segment Chinese documents into n-character words or phrases, using language statistics drawn from the Chinese Wikipedia corpus. The approach alleviates the tremendous effort that is required in preparing and maintaining the manually segmented Chinese text for training purposes, and manually maintaining ever expanding lexicons. Previously, mutual information was used to achieve automated segmentation into 2-character words. The NGMI approach extends the approach to handle longer n-character words. Experiments with heterogeneous documents from the Chinese Wikipedia collection show good results.
Resumo:
The Thai written language is one of the languages that does not have word boundaries. In order to discover the meaning of the document, all texts must be separated into syllables, words, sentences, and paragraphs. This paper develops a novel method to segment the Thai text by combining a non-dictionary based technique with a dictionary-based technique. This method first applies the Thai language grammar rules to the text for identifying syllables. The hidden Markov model is then used for merging possible syllables into words. The identified words are verified with a lexical dictionary and a decision tree is employed to discover the words unidentified by the lexical dictionary. Documents used in the litigation process of Thai court proceedings have been used in experiments. The results which are segmented words, obtained by the proposed method outperform the results obtained by other existing methods.
Resumo:
The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.