999 resultados para Segmentação de imagens
Resumo:
Programa Doutoral em Engenharia Eletrónica e de Computadores
Resumo:
A presente tese apresenta a concepção de uma rede neural oscilatória e sua realização em arquitetura maciçamente paralela, a qual é adequada à implementação de chips de visão digitais para segmentação de imagens. A rede proposta, em sua versão final, foi denominada ONNIS-GI (Oscillatory Neural Network for Image Segmentation with Global Inhibition) e foi inspirada em uma rede denominada LEGION (Locally Excitatory Globally Inhibitory Oscillator Network), também de concepção recente. Inicialmente, é apresentada uma introdução aos procedimentos de segmentação de imagens, cujo objetivo é o de situar e enfatizar a importância do tema abordado dentro de um contexto abrangente, o qual inclui aplicações de visão artificial em geral. Outro aspecto abordado diz respeito à utilização de redes neurais artificiais em segmentação de imagens, enfatizando as denominadas redes neurais oscilatórias, as quais têm apresentado resultados estimulantes nesta área. A implementação de chips de visão, integrando sensores de imagens e redes maciçamente paralelas de processadores, é também abordada no texto, ressaltando o objetivo prático da nova rede neural proposta. No estudo da rede LEGION, são apresentados resultados de aplicações originais desenvolvidas em segmentação de imagens, nos quais é verificada sua propriedade de separação temporal dos segmentos. A versão contínua da rede, um arranjo paralelo de neurônios baseados em equações diferenciais, apresenta elevada complexidade computacional para implementação em hardware digital e muitos parâmetros, com procedimento de ajuste pouco prático. Por outro lado, sua arquitetura maciçamente paralela apresenta-se particularmente adequada à implementação de chips de visão analógicos com capacidade de segmentação de imagens. Com base nos bons resultados obtidos nas aplicações desenvolvidas, é proposta uma nova rede neural, em duas versões, ONNIS e ONNIS-GI, as quais suplantam a rede LEGION em diversos aspectos relativos à implementação prática. A estrutura dos elementos de processamento das duas versões da rede, sua implementação em arquitetura maciçamente paralela e resultados de simulações e implementações em FPGA são apresentados, demonstrando a viabilidade da proposta. Como resultado final, conclui-se que a rede ONNIS-GI apresenta maior apelo de ordem prática, sendo uma abordagem inovadora e promissora na solução de problemas de segmentação de imagens, possuindo capacidade para separar temporalmente os segmentos encontrados e facilitando a posterior identificação dos mesmos. Sob o ponto de vista prático, a nova rede pode ser utilizada para implementar chips de visão digitais com arquitetura maciçamente paralela, explorando a velocidade de tais topologias e apresentando também flexibilidade para implementação de procedimentos de segmentação de imagens mais sofisticados.
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work is to study some of the density estimation tec- niques and to apply to the segmentation of medical images. Medical images are used to help the diagnostic of tumor diseases as well as to plan and deliver treatment. A computer image is an array of values representing colors in some scale. The smallest element of the image to which it is possible to assign a value is called pixel. Segmen- tation is the process of dividing the image in portions through the classi¯cation of each pixel. The simplest way of classi¯cation is by thresholding, given the number of portions and the threshold values. Another method is constructing a histogram of the pixel values and assign a portion to each pike. The threshold is the mean between two pikes. As the histogram does not form a smooth curve it is di±cult to discern between true pikes and random variation. Density estimation methods allow the estimation of a smooth curve. Image data can be considered as mixture of different densities. In this project parametric and nonparametric methods for density estimation will be addressed and some of them are applied to CT image data
Resumo:
Este artigo apresenta uma proposta de extensão do modelo de aprendizado semi-supervisionado conhecido como Competição e Cooperação entre Partículas para a realização de tarefas de segmentação de imagens. Resultados preliminares mostram que esta é uma abordagem promissora.
Resumo:
Vários métodos tradicionais de segmentação de imagens, como a transformada de watershed de marcado- res e métodos de conexidade fuzzy (Relative Fuzzy Connectedness- RFC, Iterative Relative Fuzzy Connected- ness - IRFC), podem ser implementados de modo eficiente utilizando o método em grafos da Transformada Imagem-Floresta (Image Foresting Transform - IFT). No entanto, a carência de termos de regularização de fronteira em sua formulação fazem com que a borda do objeto segmentado possa ser altamente irregular. Um modo de contornar isto é por meio do uso de restrições de forma do objeto, que favoreçam formas mais regulares, como na recente restrição de convexidade geodésica em estrela (Geodesic Star Convexity - GSC). Neste trabalho, apresentamos uma nova restrição de forma, chamada de Faixa de Restrição Geodésica (Geodesic Band Constraint - GBC), que pode ser incorporada eficientemente em uma sub-classe do fra- mework de corte em grafos generalizado (Generalized Graph Cut - GGC), que inclui métodos pela IFT. É apresentada uma prova da otimalidade do novo algoritmo em termos de um mínimo global de uma função de energia sujeita às novas restrições de borda. A faixa de restrição geodésica nos ajuda a regularizar a borda dos objetos, consequentemente melhorando a segmentação de objetos com formas mais regulares, mantendo o baixo custo computacional da IFT. A GBC pode também ser usada conjuntamente com um mapa de custos pré estabelecido, baseado em um modelo de forma, de modo a direcionar a segmentação a seguir uma dada forma desejada, com grau de liberdade de escala e demais deformações controladas por um parâmetro único. Essa nova restrição também pode ser combinada com a GSC e com as restrições de polaridade de borda sem custo adicional. O método é demonstrado em imagens naturais, sintéticas e médicas, sendo estas provenientes de tomografias computadorizadas e de ressonância magnética.
Resumo:
O presente trabalho descreve uma proposta para a representação geométrica de imagens. Através da subdivisão espacial adaptativa de uma imagem em triângulos, uma representação simplificada da estrutura da imagem pode ser obtida. Demonstramos que a representação gerada é adequada para aplicações como a segmentação e a compressão de imagens. O método de segmentação de imagens desenvolvido faz uso deste tipo de representação para obter resultados robustos e compactos, comparados a outros métodos existentes na literatura, e adequado para aplicações como a detecção, descrição e codificação de objetos. Utilizando uma representação geométrica semelhante a métodos de modelagem de superfícies, criamos um novo método de compressão de imagens que apresenta vantagens em relação a outros métodos existentes, em especial na compressão de imagens sem perdas.
Resumo:
Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented
Resumo:
Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).
Resumo:
O presente trabalho implementa um método computacional semi-automático para obter medidas de estruturas cardíacas de fetos humanos através do processamento de imagens de ultra-som. Essas imagens são utilizadas na avaliação cardíaca pré-natal, permitindo que os médicos diagnostiquem problemas antes mesmo do nascimento. A dissertação é parte de um projeto desenvolvido no Instituto de Informática da Universidade Federal do Rio Grande do Sul, denominado SEGIME (Segmentação de Imagens Médicas). Neste projeto, está sendo desenvolvida uma ferramenta computacional para auxiliar na análise de exames ecocardiográficos fetais com o apoio da equipe de Cardiologia Fetal do Instituto de Cardiologia do Rio Grande do Sul. O processamento de cada imagem é realizado por etapas, divididas em: aquisição, pré-processamento, segmentação e obtenção das medidas. A aquisição das imagens é realizada por especialistas do Instituto de Cardiologia. No pré-processamento, é extraída a região de interesse para a obtenção das medidas e a imagem é filtrada para a extração do ruído característico das imagens de ultra-som. A segmentação das imagens é realizada através de redes neurais artificiais, sendo que a rede neural utilizada é conhecida como Mapa Auto-organizável de Kohonen. Ao final do processo de segmentação, a imagem está pronta para a obtenção das medidas. A técnica desenvolvida nesta dissertação para obtenção das medidas foi baseada nos exames realizados pelos especialistas na extração manual de medidas. Essa técnica consiste na análise da linha referente à estrutura de interesse onde serão detectadas as bordas. Para o início das medidas, é necessário que o usuário indique o ponto inicial sobre uma borda da estrutura. Depois de encontradas as bordas, através da análise da linha, a medida é definida pela soma dos pixels entre os dois pontos de bordas. Foram realizados testes com quatro estruturas cardíacas fetais: a espessura do septo interventricular, o diâmetro do ventrículo esquerdo, a excursão do septum primum para o interior do átrio esquerdo e o diâmetro do átrio esquerdo. Os resultados obtidos pelo método foram avaliados através da comparação com resultados de referência obtidos por especialistas. Nessa avaliação observou-se que a variação foi regular e dentro dos limites aceitáveis, normalmente obtida como variação entre especialistas. Desta forma, um médico não especializado em cardiologia fetal poderia usar esses resultados em um diagnóstico preliminar.