990 resultados para Seedling etiolation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern tomato production, either for fruit table production or for processing, has required quality seedlings, able to withstand environmental adversities after planting and maintaining the standard genotype productive. The aim of this study was to evaluate the effect of three concentrations of PBZ (0, 50 and 100 mg L-1) and two methods of application (seed treatment and watering seedlings) on seedling emergence and seedling production of tomato growth indeterminate. We adopted a completely randomized in a 2x3 factorial scheme with four replications. We evaluated the seedling emergence, the rate of speed of emergence, seedling height and diameter of hypocotyl and their absolute growth rate (TCA), leaf area, dry weight of shoots, roots and total, and reason leaf area (RAF). Results were subjected to analysis of variance and the mean levels of the factor methods of application compared by Tukey test at 5% and the mean levels of the factor concentrations subjected to regression analysis. The application of paclobutrazol via seedlings watering did not affect seedling emergence, significantly reduced the rate of seedling growth and, consequently, the size of the seedlings without affecting the diameter of hypocotyl, plus allow accumulation of dry roots. A concentration of 50 mg L-1 was shown to be sufficient to obtain seedlings more compact, subject to leaf area, the application via watering, beyond allowing an increase of about 37% in dry weight of roots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NADPH:protochlorophyllide oxidoreductase is a key enzyme for the light-induced greening of etiolated angiosperm plants. In barley, two POR proteins exist termed PORA and PORB that have previously been proposed to structurally and functionally cooperate in terms of a higher molecular mass light-harvesting complex named LHPP, in the prolamellar body of etioplasts [Nature 397 (1999) 80]. In this study we examined the expression pattern of LHPP during seedling etiolation and de-etiolation under different experimental conditions. Our results show that LHPP is developmentally expressed across the barley leaf gradient. We further provide evidence that LHPP operates both in plants that etiolate completely before being exposed to white light and in plants that etiolate only partially and begin light-harvesting as soon as traces of light become available in the uppermost parts of the soil. As a result of light absorption, in either case LHPP converts Pchlide a to chlorophyllide (Chlide) a and in turn disintegrates. The released Chlide a, as well as Chlide b produced upon LHPP’s light-dependent dissociation, which leads to the activation of the PORA as a Pchlide b-reducing enzyme, then bind to homologs of water-soluble chlorophyll proteins of Brassicaceae. We propose that these proteins transfer Chlide a and Chlide b to the thylakoids, where their esterification with phytol and assembly into the photosynthetic membrane complexes ultimately takes place. Presumably due to the tight coupling of LHPP synthesis and degradation, as well as WSCP formation and photosynthetic membrane assembly, efficient photo-protection is conferred onto the plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The germination of seeds of Emilia sonchifolia (2n) and E. fosgerbii (4n) was analysed and our results indicate that the former present light insensitive seeds and the latter germinated only under continuous white light. The germination of seeds under shade light presented no differences between both species, However under continuous white light, which maintain 70% of Pfr, the velocity of germination was greater in Emilia sonchifolia when compared to Emilia fosbergii, indicating that the threshold of 4n seeds were greater than 2n seeds. The analysis of the fluence response curves for etiolating process indicated that the process presented no differences between both species. The same was observed for the effect of the shade light in the etiolating process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have tested the efficacy of putative microsatellite single sequence repeat (SSR) markers, previously identified in a 2-49 (Gluyas Early/Gala) × Janz doubled haploid wheat (Triticum aestivum) population, as being linked to partial seedling resistance to crown rot disease caused by Fusarium pseudograminearum. The quantitative trait loci (QTLs) delineated by these markers have been tested for linkage to resistance in an independent Gluyas Early × Janz doubled haploid population. The presence of a major QTL on chromosome 1DL (QCr.usq-1D1) and a minor QTL on chromosome 2BS (QCr.usq-2B1) was confirmed. However, a putative minor QTL on chromosome 2A was not confirmed. The QTL on 1D was inherited from Gluyas Early, a direct parent of 2-49, whereas the 2B QTL was inherited from Janz. Three other putative QTLs identified in 2-49 × Janz (on 1AL, 4BL, and 7BS) were inherited by 2-49 from Gala and were not able to be confirmed in this study. The screening of SSR markers on a small sample of elite wheat genotypes indicated that not all of the most tightly linked SSR markers flanking the major QTLs on 1D and 1A were polymorphic in all backgrounds, indicating the need for additional flanking markers when backcrossing into some elite pedigrees. Comparison of SSR haplotypes with those of other genotypes exhibiting partial crown rot resistance suggests that additional, novel sources of crown rot resistance are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed persistence is poorly quantified for invasive plants of subtropical and tropical environments and Lantana camara, one of the world's worst weeds, is no exception. We investigated germination, seedling emergence, and seed survival of two lantana biotypes (Pink and pink-edged red [PER]) in southeastern Queensland, Australia. Controlled experiments were undertaken in 2002 and repeated in 2004, with treatments comprising two differing environmental regimes (irrigated and natural rainfall) and sowing depths (0 and 2 cm). Seed survival and seedling emergence were significantly affected by all factors (time, biotype, environment, sowing depth, and cohort) (P < 0.001). Seed dormancy varied with treatment (environment, sowing depth, biotype, and cohort) (P < 0.001), but declined rapidly after 6 mo. Significant differential responses by the two biotypes to sowing depth and environment were detected for both seed survival and seedling emergence (P < 0.001). Seed mass was consistently lower in the PER biotype at the population level (P < 0.001), but this variation did not adequately explain the differential responses. Moreover, under natural rainfall the magnitude of the biotype effect was unlikely to result in ecologically significant differences. Seed survival after 36 mo under natural rainfall ranged from 6.8 to 21.3%. Best fit regression analysis of the decline in seed survival over time yielded a five-parameter exponential decay model with a lower asymptote approaching −0.38 (% seed survival = [( 55 − (−0.38)) • e (k • t)] + −0.38; R2 = 88.5%; 9 df). Environmental conditions and burial affected the slope parameter or k value significantly (P < 0.01). Seed survival projections from the model were greatest for buried seeds under natural rainfall (11 yr) and least under irrigation (3 yr). Experimental data and model projections suggest that lantana has a persistent seed bank and this should be considered in management programs, particularly those aimed at eradication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in morphology have provided a basis for detecting natural interspecific hybridisation in forest trees for decades but have come to prominence again more recently as a means for directly measuring gene flow from planted forests. Here we examined the utility of seedling morphology for hybrid discrimination in three hybrid groups relevant to the monitoring of gene flow from plantings of Corymbia (L.D. Pryor & L.A.S. Johnson ex Brooker) taxa in subtropical Australia. Thirty leaf and stem characters were assessed on 907 8-month old seedlings from four parental and six hybrid taxa grown in a common garden. Outbred F1 hybrids between spotted gums (Corymbia citriodora subspecies variegata, C. citriodora subspecies citriodora and Corymbia henryi) tended to more closely resemble their maternal Corymbia torelliana parent and the most discriminating characters were the ratio of blade length to maximum perpendicular width, the presence or absence of a lignotuber, and specific leaf weight. Assignment of individuals into genealogical classes based on a multivariate model limited to a set of the more discriminating and independent characters was highest in the hybrid group, where parental taxa were genetically most divergent. Overall power to resolve among outbred F1 hybrids from both parental taxa was low to moderate, but this may not be a limitation to its likely major application of identifying hybrids in seedlots from native spotted gum stands. Advanced generation hybrids (outbred F2 and outbred backcrosses) were more difficult to resolve reliably due to the higher variances of hybrid taxa and the tendency of backcrosses to resemble their recurrent parents. Visual assessments of seedling morphology may provide a filter allowing screening of the large numbers needed to monitor gene flow, but will need to be combined with other hybrid detection methods to ensure hybrids are detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callus induction and morphogenesis from different blackgram explants were tested on MS basal medium supplemented with B5 vitamins, IAA, NAA, IBA, KIN and BAP individually and in combinations. The explants were hypocotyl, epicotyl, axillary bud, cotyledonary node and immature leaf. The optimal levels of the frequency of callus induction was 22.8 mu M of IAA or 16.1 mu M NAA and in combination with 2.2 mu M of BAP. Among the seedling explants, hypocotyl was found to be more efficient in producing callus. Shoots mere induced from callus cultures of hypocotyls, epicotyls, axillary bud, cotyledonary node and immature leaf with varying frequencies in the medium containing KIN (2.3-9.3 mu M) or BAP (2.2-8.8 mu M) and in combination with IAA (2.8 mu M) or NAA (2.6 mu M). Multiple shoots were obtained using cotyledonary node segments. The regenerated shoots rooted best on MS basal medium containing 9.8 mu M IBA. Seventy three per cent of the shoots produced roots, and 80-85% of the plantlets survived under greenhouse condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lantana camara, a shrub of Central and South American origin, has become invasive across dry forests worldwide. The effect of the thicket-forming habit of L. camara as a dispersal and recruitment barrier in a community of native woody seedlings was examined in a 50-ha permanent plot located in the seasonally dry forest of Mudumalai, southern India. Sixty 100-m(2) plots were enumerated for native woody seedlings between 10-100 cm in height. Of these, 30 plots had no L. camara thickets, while the other 30 had dense thickets. The frequency of occurrence and abundance of seedlings were modelled as a function of dispersal mode (mammal, bird or mechanical) and affinities to forest habitats (dry forest, moist forest or ubiquitous) as well as presence or absence of dense L. camara thickets. Furthermore, frequency of occurrence and abundance of individual species were also compared between thickets and no L. camara. At the community level, L. camara density, dispersal mode and forest habitat affinities of species determined both frequency of occurrence and abundance of seedlings, with the abundance of dry-forest mammal-dispersed species and ubiquitous mechanically dispersed species being significantly lower under L. camara thickets. Phyllanthus emblica and Kydia calycina were found to be significantly less abundant under L. camara, whereas most other species were not affected by the presence of thickets. It was inferred that, by affecting the establishment of native tree seedlings, L. camara thickets could eventually alter the community composition of such forests.