910 resultados para Seed - Storage
Resumo:
The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.
Resumo:
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.
Resumo:
Seed storage behaviour of 5 1 native and 9 introduced tree species in Vietnam was investigated using a brief protocol developed to aid biodiversity conservation in circumstances where little is known about the seeds. Of the 60 species, 34 appeared to show orthodox (Acacia auriculaeformis, Adenanthera pavonina, Afzelia xylocarpa, Bauhinia purpurea, Callistemon lanceolatus, Cananga odorata, Canarium nigrum, Cassia fistula, Cassia javanica, Cassia splendida, Chukrasia tabularis, Dalbergia bariaensis, Dialium cochinchinensis, Diospyros mollis, Diospyros mun, Dracuntomelon duperreanum, Erythrophleum fordii, Khaya senegalensis, Lagerstroemia speciosa, Leucaena leucocephala, Livistona cochinchinensis, Markhamia stipulata, Melaleuca cajuputi, Millettia ichthyotona, Peltophorum pterocarpum, Peltophorum tonkinensis, Pinus khasya, Pinus massoniana, Pinus merkusii, Pterocarpus macrocarpus, Sindora siamensis, Sophora tonkinense, Sterculia foetida, Swietenia macrophylla), 13 recalcitrant (Avicennia alba, Beilschmiedia roxburghiana, Caryota mitis, Dimocarpus sp., Diospyros malabarica, Dipterocarpus chartaceus, Dypsis pinnatifrons, Hopea odorata, Lithocarpus gigantophylla, Machilus odoratissimus, Melanorrhoea laccifera, Melanorrhea usitata, Syzygium cinereum) and 13 intermediate (Anisoptera cochinchinensis, Aphanamixis polystachya, Averrhoa carambola, Carissa carandas, Chrysopylum cainito, Cinnamomum camphora, Citrofortunella microcarpa, Citrus grandis var. grandis, Elaeis guineensis, Hydnocarpus anthelmintica, Madhuca floribunda, Manilkara achras, Mimusops elengi) seed storage behaviour. A double-criteria key to estimate likely seed storage behaviour showed good agreement with the above: the key can reduce the workload of seed storage behaviour identification considerably.
Resumo:
Seeds of Avicennia alba BI. matured at high moisture content and were sensitive to desiccation: no seeds survived desiccation below 35% moisture content. The effect on survival of a factorial combination of five moist storage treatments (fresh seeds in a polyethylene bag, open with water sprayed over regularly, mixed with sand at 10% moisture content, mixed with moist paddy hulls, or naked seeds mixed with sand at 10% moisture content) and three temperatures (28-30degreesC, 17degreesC and 8-10degreesC) was investigated. In addition, seeds were mixed with sand at 5% moisture content and stored at 17degreesC in order to determine the effect of sand moisture content on seed moisture content and viability during storage. Avicennia alba showed recalcitrant seed storage behaviour, but 75% of the seeds remained viable after four months' moist (45-47% moisture content) storage in 10% moisture content sand at 17degreesC.
Resumo:
Information was collated on the seed storage behaviour of 67 tree species native to the Amazon rainforest of Brazil; 38 appeared to show orthodox, 23 recalcitrant and six intermediate seed storage behaviour. A double-criteria key based on thousand-seed weight and seed moisture content at shedding to estimate likely seed storage behaviour, developed previously, showed good agreement with the above classifications. The key can aid seed storage behaviour identification considerably.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction. Rambutan is a tropical fruit species with recalcitrant seeds. Despite the expansion of exotic fruit cultivation in Brazil, lots of which fruit species, including rambutan, need basic information, especially in relation to propagation and storage of seeds, which are important for genetic improvement studies, maintenance of genetic sources and seedling production. Materials and methods. A completely randomized design was adopted with treatments distributed in a factorial arrangement, 3 x 4, referring to three seed storage conditions [room temperature conditions; a dry chamber with (18 +/- 2) degrees C and 60% relative humidity; and a cold chamber with (10 +/- 2) degrees C and 70% relative humidity] and four storage times ( 0, 7, 14 and 21 d). Each treatment of 10 seeds was replicated five times. Data on seedling emergence, emergence rate, plant height, number of leaves and length of main root were submitted to variance analysis and means were separated using Tukey's test. Correlation analysis between seed moisture and seedling emergence was performed. Results and discussion. Our results indicated that dry chamber conditions promoted the statistically significantly highest seedling emergence after 7 d of storage. Cold chamber conditions promoted an extremely low seedling emergence independently of time. Conclusion. Rambutan seeds can be stored in a dry chamber for 7 d without losing viability; after 14 d of storage the loss of emergence is 60%.
Resumo:
Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP) hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (K-m 55.7 mu M) in an optimum pH of 7.1, and this activity is effectively retained until 50 degrees C. CeSP remained stable in the presence of kosmotropic anions (PO43-, SO42-, and CH3COO-) or chaotropic cations (K+ and Na+). It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.
Resumo:
[EN] In the frame of the restoration of natural populations of Cymodocea nodosa of the Canary Islands, seeds are being collected at natural populations where germination is rather scarce and seasonal after dormancy. We have developed techniques of propagation in vitro of collected seeds, consisting in forced seed germination and seedlings propagation to obtain mature 20-30 cm plantlet, which eventually are being used for restoration. In order to improve the developed methodology, several experiments were conducted to adjust conditions for seed storage under different regimes of temperature without loosing germinative potential, fertilize during propagation with controlled released NPK fertilizers, and increase growth by dipping seedlings in solutions of the most common plant hormones.
Resumo:
The amino acid sequences of a number of closely related proteins ("napin") isolated from Brassica napus were determined by mass spectrometry without prior separation into individual components. Some of these proteins correspond to those previously deduced (napA, BngNAP1, and gNa), chiefly from DNA sequences. Others were found to differ to a varying extent (BngNAP1', BngNAP1A, BngNAP1B, BngNAP1C, gNa', and gNaA). The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replacement of N-terminal proline by pyroglutamic acid; the long chains of gNaA and BngNAP1B contain a six amino acid stretch, MQGQQM, which is present in gNa (according to its DNA sequence) but absent from BngNAP1 and BngNAP1C. These alternations of sequences between napin isoforms are most likely due to homologous recombination of the genetic material, but some of the changes may also be due to RNA editing. The amino acids that follow the untruncated C termini of those napin chains for which the DNA sequences are known (napA, BngNAP1, and gNa) are aromatic amino acids. This suggests that the processing of the proprotein leading to the C termini of the two chains is due to the action of a protease that specifically cleaves a G/S-F/Y/W bond.