997 resultados para Sedimentology
Resumo:
Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).
Resumo:
The climatic development of the Mid to Late Quaternary (last 400,000 years) is characterised by fluctuation between glacial and interglacial periods leading to the present interglacial, the Holocene. In comparison to preceding periods it was believed the Holocene represented a time of relative climatic stability. However, recent work has shown that the Holocene can be divided into cooler periods such as the Little Ice Age alternating with time intervals where climatic conditions ameliorated i.e. Medieval Warm Period, Holocene Thermal Optimum and the present Modern Optimum. In addition, the Holocene is recognised as a period with increasing anthropogenic influence on the environment. Onshore records recording glacial/interglacial cycles as well as anthropogenic effects are limited. However, sites of sediment accumulation on the shallow continental shelf offer the potential to reconstruct these events. Such sites include tunnel valleys and low energy, depositional settings. In this study we interrogated the sediment stratigraphy at such sites in the North Sea and Irish Sea using traditional techniques, as well as novel applications of geotechnical data, to reconstruct the palaeoenvironmental record. Within the German North Sea sector a combination of core, seismic and in-situ Cone Penetration Testing (CPT) data was used to identify sedimentary units, place them within a morphological context, relate them to glacial or interglacial periods stratigraphically, and correlate them across the German North Sea. Subsequently, we were able to revise the Mid to Late Quaternary stratigraphy for the North Sea using this new and novel data. Similarly, Holocene environmental changes were investigated within the Irish Sea at a depositional site with active anthropogenic influence. The methods used included analyses on grain-size distribution, foraminifera, gamma spectrometry, AMS 14C and physical core logging. The investigation revealed a strong fluctuating climatic signal early in the areas history before anthropogenic influence affects the record through trawling.
Resumo:
The Verulam Formation (Middle Ordovician) at the Lakefield Quarry and Gamebridge Quarry, southern Ontario, is comprised of five main lithofacies. These include shoal deposits consisting of Lithofacies 1, winnowed crinoidal grainstones and, shelf deposits consisting of: Lithofacies 2, wackestones, packstones, grainstones, and rudstones; Lithofacies 3, laminated calcisiltites; Lithofacies 4, nodular wackestones and mudstones; and, Lithofacies 5, laminated mudstones and shales. The distribution of the lithofacies was influenced by variations in storm frequency and intensity during a relative sea level fall. Predominant convex-up attitudes of concavo-convex shells within shell beds suggest syndepositional reworking during storm events. The bimodal orientations of shell axes on the upper surfaces of the shell beds indicates deposition under wave-generated currents. The sedimentary features and shell orientations indicate that the shell beds were deposited during storm events and not by the gradual accumulation of shelly material. Cluster and principal component analysis of relative abundance data of the taxa in the shell beds, interbedded nodular wackestones and mudstones, and laminated mudstones and shales, indicates one biofacies comprised of three main assemblages: a strophomenid (Sowerbyelladominated) assemblage, a transitional mixed strophomenid-atrypid assemblage and an atrypid (Zygospira-dominatQd) assemblage. The occurrence of the strophomenid, the strophomenid-atrypid and atrypid assemblages were controlled by storm-driven allogenic taphonomic feedback.
Resumo:
The Dummer Complex extends 180 km along the Precambrian - Paleozoic contact from Tamworth to Lake Simcoe. It is composed of coarse, angular Paleozoic clasts in discontinuous, pitted, hummocky deposits. Deposits are usually separated by bare or boulder strewn bedrock, but have been found in the southern drumlinized till sheet. Dummer Complex deposits show rough alignment with ice-flow. Eskers cross-cut many of the deposits. Dummer sediment subfacies are defined on the basis of dominant coarse grain size and lithology, which relate directly to the underlying Paleozoic formation. Three subglacial tills are identified based on the degree of comminution and distance of transport; the immature facies of the Dummer Complex; the mature facies of the drumlinized till sheet and; the submature facies which is transitional. Carbonate geochemistry was used for till-bedrock correlation in various grain sizes. Of the 3 Paleozoic formations underlying the Dummer Complex, the Gull River Fm. is geochemically distinctive from the Bobcaygeon and Verulam Formations using Ca, Mg, Sr, Cu, Mn, Fe and Na. The Bobcaygeon Fm. and Verulam Fm. can be differentiated using Ca and the Sr/Ca ratio. The immature facies from 1.0 phi and finer is dominated by the non-carbonate, long distance transported component which decreases slightly downice. The submature till facies contains more long distance material than the immature facies. Sr and Mn can be used to correlate the Gull River immature till facies to the underlying bedrock the other subfacies could not be distinguished from each other or their respective source formation. This method proved to be ineffective for sediments with greater than 35% non-carbonate component, due to leaching of elements by the dissolving acid.The Dummer Complex is produced subglacially , as the compressional ice encounters the permeable Paleozoic carbonates. The increased shear strength of the ice and pore pressures in the carbonates results in the basal ice zones becoming debris ladden. Cleaner ice overrides the basal debris . laden dead ice which then acts as the glacier bed. During retreat, the Simcoe lobe stagnates as flow is cut-off by the Algonquin Highlands.
Resumo:
Since the first offshore Lake Erie well was drilled in 1941, the Grimsby and Thorold formations of the Cataract Group have been economically important to the oil and gas industry of Ontario. The Cataract Group provides a significant amount of Ontario's gas production primarily from wells located on Lake Erie. The Grimsby - Thorold formations are the result of nearshore estuarine processes influenced by tides on a prograding shelf and are composed of subtidal channel complexes, discrete tidal channels, mud flats and non-marine deposits. Deposition was related to a regressive - transgressive cycle associated with eustatic sea level changes caused by the melting and resurgence of continental glaciation centred in Africa in the Late Ordovician/Early Silurian. Grimsby deposition began during a regression with the deposition of subtidal channel complexes incised into the marine deposits of the Cabot Head Formation. The presence of mud drapes and mud couplets suggest that these deposits were influenced by tides. These deposits dominate the lower half of the Grimsby. Deposition continued with a change from these subtidal channel complexes to laterally migrating, discrete, shallow tidal channels and mud flats. These were in turn overlain by the non-marine deposits of the Thorold Formation. Grimsby - Thorold deposition ended with a major transgression replacing siliciclastic deposition with primarily carbonate deposition. Sediment was sourced from the east and southeast and associated with a continuation of the Taconic Orogeny into the Early Silurian. The fluvial head of the estuary prograded from a shoreline that was located in western New York and western Pennsylvania running NNE-SSW and then turning NW-SE and paralleling the present day Lake Erie shoreline. iii The facies attributed to the Grimsby - Thorold formations can be ascribed to the three zones within the tripartite zonation suggested by Dalrymple et ale (1992) for estuaries, that is, a marine-dominated facies, a mixed energy facies, and a facies that is dominated by fluvial processes. Also, sediments within the Grimsby - Thorold are commonly fining upwards sequences which are common in estuarine settings whereas deltaic deposits are normally composed of coarsening upwards sequences in a vertical wedge shape with coarser material near the head. The only coarsening observed was in the Thorold Formation and attributed to non-marine deposition by palynological evidence. The presence of a lag deposit at the base of the sediments of the Grimsby Thorold formations suggests that they were incised into the Cabot Head Formation. Further, the thickness of Early Silurian sediments located between the top of the Queenston Formation, where Early Silurian sedimentation began, to the top of the Reynales - Irondequoit formation are constant whether the Grimsby - Thorold formations are present or not. Also, cross-sections using a sand body located in the Cabot Head Formation for correlation further imply that the Grimsby Formation has been incised into the previous deposits of the Cabot Head.
Resumo:
The drumlin sediments at Chimney Bluffs, New York appear to represent a block-inmatrix style glacial melange. This melange comprises sand stringers, lenses and intraclasts juxtaposed in an apparently massive diamicton. Thin section examination of these glacigenic deposits has revealed microstructures indicative of autokinetic subglacial defonnation which are consistent with a deformable bed origin for the diamicton. These features include banding and. necking of matrix grains, oriented plasma fabrics and the formation of pressure shadows at the long axis ends of elongate clasts. Preservation of primary stratification within the sand intraclasts appears to suggest that these features were pre-existing up-ice deposits that were frozen, entrained, then deposited as part of a defonning till layer beneath an advancing ice sheet. Multi-directional micro-shearing within the sand blocks is thought to reflect the frozen nature of the sand units in such a high strain environment. It is also contended that dewatering of the sediment pile leading to the eventual immobilisation of the defonning till layer was responsible for opening sub-horizontal fissures within the diamicton. These features were subsequently infilled with mass flow poorly sorted sands and silts which were subjected to ductile defonnation during the waning stages of an actively deforming till layer. Microstructures indicative of the dewatering processes in the sand units include patches of fine-grained particles within a coarser-grained matrix and the presence of concentrated zones of translocated clays. However, these units were probably confined within an impermeable diamicton casing that prevented massive pore water influxes from the deforming till layer~ Hence, these microstructures probably reflect localised dewatering of the sand intraclasts. A layered subglacial shear zone model is proposed for the various features exhibited by the drumlin sediments. The complexity of these structures is explained in terms of ii superposing deformation styles in response to changing pore water pressures. Constructional glaciotectonics, as implied by the occurrence of sub-horizontal fissuring, is suggested as the mechanism for the stacking of the sand intraclast units within the diamicton. The usefulness of micromorphology in complimenting the traditional sedimentology of glacigenic deposits is emphasised by the current study. An otherwise massive diamicton was shown to contain microstructures indicative of the very high strain rates expected in a complexly deforming till layer. . It is quite obvious from this investigation that the classification of diamictons needs to be re-examined for evidence of microstructures that could lead to the re-interpretation of diamicton forming processes. RESUME Le pacquet de sediments drumlinaire de Chimney Bluffs, New York, represent un "bloc-en-matrice" genre de melange glaciale. Des structures microscopique comprennent l'evidence pour la defonnation intrinseque attribuee a l'origine lit non resistant du drumlin. PreselVation des structures primaires au coeur des blocs arenaces suggere que ceux sont des depots preexistant qui furent geles, entraines et par la suite sedimentes au milieu d'une couche de debris sous-glaciaires en voie de deformation. Des failles microscopiques a l'interieur des blocs arenaces appuient aussi l'idee d'un bloc cohesif (c'est-a-dire gele) au centre d'un till non resistant. Des implications significatives s'emergent de cette etude pour les conditions sous-glaciaire et les processus de la formation des drumlin.
Resumo:
The effec s of relative water level changes in Lake Ontario were detected in the ysical, chemical and biological characteristics of the sediments of the Fifteen, Sixteen and Twenty Mile Creek lagoonal complexes. Regional environmental changes have occurred resulting in the following sequence of sediments in the three lagoons and marsh. From the base up they are; (I) Till,(2) Pink Clay, (3) Bottom Sand, (4) Gyttja, (5) Orange Sandy Silt, (6) Brown Clay and (7) Gray Clay. The till was only encountered in the marsh and channel; however, it is presumed to occur throughout the entire area. The presence of diatoms and sponge spicules, the vertical and ongitudinal uniformity of the sediment and the stratigr ic position of the Pink Clay indicate that it has a glacial or post-glacial lacustrine origin. Overl ng the Pink Clay or Till is a clayey, silty sand to gravel. The downstream fining and unsorted nature of this material indicate that it has a fluvial/deltaic origin. Water levels began rising in the lagoon 3,250 years ago resulting in the deposition of the Gyttja, a brown, organic-rich silty clay probably deposited in a shallow, stagnant environment as shown by the presence of pyrite in the organic material and relatively high proportions of benthic diatoms and grass pollen. Increase in the rate of deposition of the Gyttja on Twenty Mile Creek and a decrease in the same unit on Sixteen Mile Creek is possibly the result of a capture of the Sixteen Mile Creek by the Twenty Mile Creek. The rise in lake level responsible for the onset and transgression of this III unit may have been produced by isostatic rebound; however, the deposition also corresponds closely to a drop in the level of Lake Huron and increased flow through the lower lakes. The o ange Sandy Silt, present only in the marsh, appears to be a buried soil horizon as shown by oxidized roots, and may be the upland equivalant to the Gyttja. Additional deepening resulted in the deposition of Brown Clay, a unit which only occurs at the lakeward end of the three lagoons. The decrease in grass pollen and the relatively high proportion of pelagic diatoms are evidence for this. The deepening may be the result of isostatic rebound; however, the onset of its deposition at 1640 years B.P. is synchronous in the three lagoons and corresponds to the end of the subAtlantic climatic episode. The effects of the climatic change in southern Ontario is uncertain. Average deposition rates of the Brown Clay are similar to those in the upper Gyttja on Sixteen Mile Creek; however, Twenty Mile Creek shows lower rates of the Brown Clay than those in the upper Gyttja. The Gray Clay covers the present bottom of the three lagoons and also occurs in the marsh It is inter1aminated wi sand in the channels. Increases in the rates of deposi ion, high concentrations of Ca and Zn, an Ambrosia rise, and an increase in bioturbation possibly due to the activities of the carp, indicate th this unit is a recent deposit resulting from the activities of man.
Resumo:
The lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.
Resumo:
The Oak Ridges Moraine is a major physiographic feature of south-central Ontario, extending from Rice Lake westward to the Niagara Escarpment. While much previous work has largely postulated a relatively simple the origin of the moraine, recent investigations have concentrated on delineating the discernible glacigenic deposits (or landform architectural elements) which comprise the complex mosaic of the Oak Ridges Moraine. This study investigates the sedimentology of the Bloomington fan complex, one of the oldest elements of the Oak Ridges Moraine. The main sediment body of the Bloomington fan complex was deposited during early stages of the formation of the Oak Ridges Moraine, when the ice subdivided, and formed a confined, interlobate lake basin between the northern and southern lobes. Deposition from several conduits produced a fan complex characterized by multiple, laterally overlapping, fan bodies. It appears that the fans were active sequentially in an eastward direction, until the formation of the Bloomington fan complex was dominated by the largest fan fed by a conduit near the northeastern margin of the deposit. Following deposition of the fan complex, the northern and southern ice margins continued to retreat, opening drainage outlets to the west and causing water levels to drop in the lake basin. Glaciofluvial sediment was deposited at this time, cutting into the underlying fan complex. Re-advancing northern ice then closed westerly outlets, and caused water levels to increase, initiating the re-advance of the southern ice. As the southern ice approached the Bloomington fan, it deposited an ice-marginal sediment complex consisting of glacigenic sediment gravity flows, and glaciolacustrine and glaciofluvial sediments exhibiting north and northwesterly paleocurrents. Continued advance of the southern ice, overriding the fan complex, ii produced large-scale glaciotectonic deformation structures, and deposited the Halton Till. The subaqueous fan depositional model that is postulated for the Bloomington fan complex differs from published models due to the complex facies associations produced by the multiple conduit sources of sediment feeding the fans. The fluctuating northern and southern ice margins, which moved across the study area in opposite directions, controlled the water level in the interlobate basin and caused major changes in depositional environments. The influence of these two lobes also caused deposition from two distinct source directions. Finally, erosion, deposition, and deformation of the deposit with the readvance of the southern ice contributed further to the complexity of the Bloomington fan complex.
Resumo:
Surficial sediments east of Dunnville, Ontario representing a limited deltaic/lacustrine/aeolian system are investigated with the aim of defining and interpreting their geological history by means of exarrrrning their sedimentology and interrelationships. The Folk and \oJard grain size statistics of samples fran the area were calculated. These sample parameters were e1en plotted on maps to detennine regional patterns. The strongest pattern observed was one of distinct fining to the east, away fran the sand source. Aeolian deposits were fourrl to be better sorted than the surrcunding sediments. The grain size parameter values were also plotted on bivariate graphs in an attempt to separate the samples according to depositional environment. This exercise met with little success, as rrost of the sediments sampled in the area have similar grain size parameters. This is believed to be because the sediment sources for the different environments (delta, distal delta, aeolian dune) are intimately related, to the point that nnst dunes appear to have been sourcErl fran immediately local sediments. It is FOstulated that in such a srrall sedimentological sub-system, sediments were not involved in active transport for a length of time sufficient for the rraterial to cane to equilibritnn with its transporting medium. Thus, fe..v distinctive patterns of parameters were developed that would enable one to differentiate between various environments of neposition. The i.rnTaturity of rrany dune forms and the i.Imaturity of mineralogical composition of all deposits support the above hyt:XJthesis of limited transport time. Another hypothesis proposen is that eadh geologically or geographically distinct area or "sub-system" rray have its o,.m "signature" of grain size relationships as plotted on bivariate graphs. Thus, the emphasis, concerning graphs of this type, should not be placErl on attempting to nifferentiate between various environnents of deposition, hut raB1er on investigating the interrelationships between sanples am environments within that "sub-system". Through the course of this investigation, the existence of nelta plain distributary Channels in the thesis area is SUG0ested, and the mscovery of significantly mfferent sub-units within the TUnnville dune sediments is documented. It is inferred by reference to other authors interpretations of the glacial history of the area, that the tirre of effective aeolian acti vi ty in the Dunnville area was between 12,300 to 12,100 years R.p.
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
The evolution of coast through geological time scale is dependent on the transgression-regression event subsequent to the rise or fall of sea level. This event is accounted by investigation of the vertical sediment deposition patterns and their interrelationship for paleo-enviornmental reconstruction. Different methods like sedimentological (grain size and micro-morphological) and geochemical (elemental relationship) analyses as well as radiocarbon dating are generally used to decipher the sea level changes and paleoclimatic conditions of the Quaternary sediment sequence. For the Indian coast with a coastline length of about 7500 km, studies on geological and geomorphological signatures of sea level changes during the Quaternary were reported in general by researchers during the last two decades. However, for the southwest coast of India particularily Kerala which is famous for its coastal landforms comprising of estuaries, lagoons, backwaters, coastal plains, cliffs and barrier beaches, studies pertaining to the marine transgression-regression events in the southern region are limited. The Neendakara-Kayamkulam coastal stretch in central Kerala where the coast is manifested with shore parallel Kayamkulam Lagoon on one side and shore perpendicular Ashtamudi Estuary on the other side indicating existence of an uplifted prograded coastal margin followed by barrier beaches, backwater channels, ridge and runnel topography is an ideal site for studying such events. Hence the present study has been taken up in this context to address the gap area. The location for collection of core samples representing coastal plain, estuarylagoon and offshore regions have been identified based on published literature and available sedimentary records. The objectives of the research work are: To study the lithological variations and depositional environments of sediment cores along the coastal plain, estuary-lagoon and offshore regions between Kollam and Kayamkulam in the central Kerala coast To study the transportation and diagenetic history of sediments in the area To investigate the geochemical characterization of sediments and to elucidate the source-sink relationship To understand the marine transgression-regression events and to propose a conceptual model for the region The thesis comprises of 8 chapters. The first chapter embodies the preamble for the selection and significance of this research work. The study area is introduced with details on its physiographical, geological, geomorphological, rainfall and climate information. A review of literature, compiling the research on different aspects such as physico-chemical, geomorphological, tectonics, transgression-regression events are presented in the second chapter and they are broadly classified into three viz:- International, National and Kerala. The field data collection and laboratory analyses adopted in the research work are discussed in the third chapter. For collection of sediment core samples from the coastal plains, rotary drilling method was employed whereas for the estuary-lagoon and offshore locations the gravity/piston corer method was adopted. The collected subsurficial samples were analysed for texture, surface micro-texture, elemental analysis, XRD and radiocarbon dating techniques for age determination. The fourth chapter deals with the textural analysis of the core samples collected from various predefined locations of the study area. The result reveals that the Ashtamudi Estuary is composed of silty clay to clayey type of sediments whereas offshore cores are carpeted with silty clay to relict sand. Investigation of the source of sediments deposited in the coastal plain located on either side of the estuary indicates the dominance of terrigenous to marine origin in the southern region whereas it is predominantly of marine origin towards the north. Further the hydrodynamic conditions as well as the depositional enviornment of the sediment cores are elucidated based on statistical parameters that decipher the deposition pattern at various locations viz., coastal plain (open to closed basin), Ashtamudi Estuary (partially open to restricted estuary to closed basin) and offshore (open channel). The intensity of clay minerals is also discussed. From the results of radiocarbon dating the sediment depositional environments were deciphered.The results of the microtextural study of sediment samples (quartz grains) using Scanning Electron Microscope (SEM) are presented in the fifth chapter. These results throw light on the processes of transport and diagenetic history of the detrital sediments. Based on the lithological variations, selected quartz grains of different environments were also analysed. The study indicates that the southern coastal plain sediments were transported and deposited mechanically under fluvial environment followed by diagenesis under prolonged marine incursion. But in the case of the northern coastal plain, the sediments were transported and deposited under littoral environment indicating the dominance of marine incursion through mechanical as well as chemical processes. The quartz grains of the Ashtamudi Estuary indicate fluvial origin. The surface texture features of the offshore sediments suggest that the quartz grains are of littoral origin and represent the relict beach deposits. The geochemical characterisation of sediment cores based on geochemical classification, sediment maturity, palaeo-weathering and provenance in different environments are discussed in the sixth chapter. In the seventh chapter the integration of multiproxies data along with radiocarbon dates are presented and finally evolution and depositional history based on transgression–regression events is deciphered. The eighth chapter summarizes the major findings and conclusions of the study with recommendation for future work.