953 resultados para Secondary Metabolites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibriosis caused by opportunistic and secondary bacterial pathogens is still a serious disease problem in aquaculture of the black tiger shrimp Penaeus monodon. Attempts were made for controlling shrimp bacterial disease using Marine Secondary Metabolites (MSMs). Findings indicated that the MSMs of seaweed Ulva fasciata and Dendrilla nigra are effective for controlling shrimp bacterial pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two strains of Penicillium, DQ25 and SC10, isolated from marine sponge Haliclona angulata (Bowerbank) and Hymeniacidon sp. respectively, were subjected to stationary cultivation under GYP medium for 30 days. The fermentation extracts were undergone bioactivities assays against human pathogens, phytopathogenic fungi and brine shrimp (Artemia salina). Bioassays-guided compounds isolation was performed by Silica gel columns and Sephadex LH-20 chromatography. Spectroscopic methods were used to structures elucidation of the compounds. Results showed the activities of secondary metabolites of strain DQ25 were generally stronger than that of strain SC10. Major bioactive molecules isolated from strain DQ25 were a 1,4-naphthoquinone derivative and an unidentified alkaloid. The two components were not isolated from the extract of strain SC10. ITS sequences revealed that these two species have the greatest similarity with Penicillium vinaceum and Penicillium granulatum respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichoderma spp are effective competitors against other fungi because they are mycoparasitic and produce hydrolytic enzymes and secondary metabolites that inhibit the growth of their competitors. Inhibitory compounds produced by Trichoderma aggressivum, the causative agent of green mold disease, are more toxic to the hybrid off-white strains of Agaricus bisporus than the commercial brown strains, consistent with the commercial brown strain’s increased resistance to the disease. This project looked at the response of hybrid off-white and commercial brown strains of A. bisporus to the presence of T. aggressivum metabolites with regard to three A. bisporus genes: laccase 1, laccase 2, and manganese peroxidase. The addition of T. aggressivum toxic metabolites had no significant effect on MnP or lcc1 transcript abundance. Alternatively, laccase 2 appears to be involved in resistance to T. aggressivum because the presence of T. aggressivum metabolites results in higher lcc2 transcript abundance and laccase activity, especially in the commercial brown strain. The difference in laccase expression and activity between A. bisporus strains was not a result of regulatory or coding sequence differences. Alteration of laccase transcription by RNAi resulted in transformants with variable levels of laccase transcript abundance. Transformants with a low number of lcc transcripts were very sensitive to T. aggressivum toxins, while those with a high number of lcc transcripts had increased resistance. These results indicated that laccase activity, in particular that encoded by lcc2, serves as a defense response of A. bisporus to T. aggressivum toxins and contributes to green mold disease resistance in commercial brown strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P rosea syn. Indica belong to the family of plumbaginaceae, is an important medicinal plant, cultivated widely in India. The roots of these plant are generally used for medicinal purposes mainly as diuretic, germicidal, vessicant, and abortifacient. It is also used for anaemia, diarrhea, leprosy and common wart. The bark of the root contains orange yellow pigment named plumbagin, a crystalline substance, belongs to the class of naphthoquinone. Its chemical structure is 5-hydroxy 2-methyl 1,4naphthoquinone. Apart from P rosea, P zeylanica, P europea, Drosera and Drosophyllum also contains plumbagin. The most exploited source of plumbagin is, of course, P. rosea roots. The roots contain O.9mg/ g D.Wt. of plumbagin in the roots. These plants grow very slowly and the roots suitable for plumbagin extraction can be obtained only after several years of growth. The productivity of the plant is also rather poor. The focus of the present study was to develop alternative strategies to obtain plumbagin. The tissue culture of P rosea for micropropagation has been studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the light of the very huge demand for natural ephedrine and pseudoephidrine, a search for an angiosperm plant containing the alkaloid ephedrine was made and could locate Sida spp. of malvaceae family. Sida is a large genus of, herbs and shrubs distributed throughout the tropics. About a dozen species occur in India. The medicinally important species known are S.rhombrfolia S.cordata and S.spinosa (Anon, 1972). Among the various species, S.rh0mbIfolia is the most widely used one in the traditional system of medicine. An attempt was made in the present study to develop an ideal bioprocess for the in vitro production of ephedrine from the cell culture system of Sida rhombrfolia Linn. ssp. retusa. The callus and suspension culture were initiated and attempts were made to enhance the yield positively by employing various strategies like mutagenesis, immobilization and addition of precursors, elicitors and penneabilizing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied changes in secondary metabolites in human neutrophils undergoing constitutive or tumour necrosis factor (TNFalpha) stimulated apoptosis by a combination of high-performance liquid chromatography (HPLC) and NMR spectroscopy. Our results show that in contrast to freshly isolated neutrophils, neutrophil cells aged for 20 h in vitro had marked differences in the levels of a number of endogenous metabolites including lactate, amino acids and phosphocholine (PCho). There was no change in the concentration of taurine or glutamate and the ATP/ADP ratio was not affected. Levels of glutamine and lactate actually decreased. Identical changes were also observed in neutrophils stimulated to undergo apoptosis over a shorter time period (6 h) in the presence of TNFalpha and the phosphatidylinositol-3-kinase inhibitor wortmannin (WM). The changes in the concentration of PCho suggest possible activation of phospholipase associated with apoptosis or a selective failure of phosphatidycholine synthesis. The increased levels of apoptosis obtained with WM+TNFalpha, compared to TNFalpha by itself, suggest a synergistic effect by these compounds. The acceleration in rate of apoptosis probably arises from suppression by WM of pathway(s) that normally delay the onset of apoptosis. Changes in PCho and other endogenous metabolites, if proven to be characteristic of apoptosis in other cell systems, may permit non-invasive quantification of apoptosis. '

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)