970 resultados para Second-order accurate shifted Grunwald


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a space Riesz fractional advection-dispersion equation. The equation is obtained from the standard advection-diffusion equation by replacing the ¯rst-order and second-order space derivatives by the Riesz fractional derivatives of order β 1 Є (0; 1) and β2 Є(1; 2], respectively. Riesz fractional advection and dispersion terms are approximated by using two fractional centered difference schemes, respectively. A new weighted Riesz fractional ¯nite difference approximation scheme is proposed. When the weighting factor Ѳ = 1/2, a second- order accurate numerical approximation scheme for the Riesz fractional advection-dispersion equation is obtained. Stability, consistency and convergence of the numerical approximation scheme are discussed. A numerical example is given to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A second order accurate, characteristic-based, finite difference scheme is developed for scalar conservation laws with source terms. The scheme is an extension of well-known second order scalar schemes for homogeneous conservation laws. Such schemes have proved immensely powerful when applied to homogeneous systems of conservation laws using flux-difference splitting. Many application areas, however, involve inhomogeneous systems of conservation laws with source terms, and the scheme presented here is applied to such systems in a subsequent paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a new approach for solving a certain class of anomalous diffusion equations was developed. The theory and algorithms arising from this work will pave the way for more efficient and more accurate solutions of these equations, with applications to science, health and industry. The method of finite volumes was applied to discretise the spatial derivatives, and this was shown to outperform existing methods in several key respects. The stability and convergence of the new method were rigorously established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the phase-conjugation polarization interference between two two-photon processes, we theoretically investigated the attosecond scale asymmetry sum-frequency polarization beat in four-level system (FASPB). The field correlation has weak influence on the FASPB signal when the laser has narrow bandwidth. Conversely, when the laser has broadband linewidth, the FASPB signal shows resonance-nonresonance cross correlation. The two-photon signal exhibits hybrid radiation-matter detuning terahertz; damping oscillation, i.e., when the laser frequency is off resonance from the two-photon transition, the signal exhibits damping oscillation and the profile of the two-photon self-correlation signal also exhibits zero time-delay asymmetry of the maxima. We have also investigated the asymmetry of attosecond polarization beat caused by the shift of the two-photon self-correlation zero time-delay phenomenon, in which the maxima of the two two-photon signals are shifted from zero time-delay point to opposite directions. As an attosecond ultrafast modulation process, FASPB can be intrinsically extended to any level-summation systems of two dipolar forbidden excited states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique to calculate the current waveform for both close-up and remote short-circuit faults on DC supplied railways and subways is presented. Exact DC short-circuit current calculation is best performed by sophisticated computer transient simulations. However, an accurate simplified calculation method based on second-order approximation which can be easily executed with the help of a calculator or a spreadsheet program is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex exponential basis expansion model (CE-BEM) provides an accurate description for the time-varying (TV) channels encountered in mobile communications. Many blind channel identification and equalization approaches based on the CE-BEM require precise knowledge of the basis frequencies of TV channels. Existing methods for basis frequency estimation usually resort to the higher-order statistics of channel outputs and impose strict constraints on the source signal. In this paper, we propose a novel method to estimate the basis frequencies for blind identification and equalization of time-varying single-input multiple-output (SIMO) finite-impulse-response (FIR) channels. The proposed method exploits only the second-order statistics of channel outputs and does not require strong conditions on the source signal. As a result, it exhibits superior performance to the existing basis frequency estimation methods. The validity of our method is demonstrated by numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this paper is on hydrodynamic modelling of a semisubmersible platform (which can support a 1.5MW wind turbine and is composed by three buoyant columns connected by bracings) with especial emphasis on the estimation of the wave drift components and their effects on the design of the mooring system. Indeed, with natural periods of drift around 60 seconds, accurate computation of the low-frequency second-order components is not a straightforward task. As methods usually adopted when dealing with the slow-drifts of deep-water moored systems, such as Newman?s approximation, have their errors increased by the relatively low resonant periods, and as the effects of depth cannot be ignored, the wave diffraction analysis must be based on full Quadratic Transfer Functions (QTF) computations. A discussion on the numerical aspects of performing such computations is presented, making use of the second-order module available with the seakeeping software WAMIT®. Finally, the paper also provides a preliminary verification of the accuracy of the numerical predictions based on the results obtained in a series of model tests with the structure fixed in bichromatic waves.