985 resultados para Seasonally tropical dry forest
Resumo:
In order to produce useful knowledge to the initiatives of protection and management of forest fragments, more specifically for tropical dry forests which suffer with frequent anthropic activities, and due to the lack of specific studies, this article aimed describe the structure and the floristic similarity among three areas of dry forest with different management histories. The study was developed in Capitão Enéas municipality, Northern Minas Gerais, Brazil, where three fragments were evaluated, being one in regeneration for 30 years, another submitted to occasional fire and the third with selective cut in small scale. The sampling was developed through the point quarter method considering all the alive phanerophyte individuals with circumference at breast height (CBH) > 15 cm. In the three fragments, 512 individuals, distributed in 60 species, 47 genera, and 23 families were sampled. The most representative families were Fabaceae (26), Anacardiaceae (4), Bignoniaceae (3) and Combretaceae (3). However, fourteen families were represented by only one species. Only eight species were common to all fragments - Myracrodruon urundeuva standed out with 26.9% of all sampled individuals - while a great number of species were exclusive of each fragment. The floristic and structural differences between the fragments are possibly related to the history and intensity of management in each area besides the topography variations and the presence or absence of limestone outcrops. These results show the importance of each fragment, indicating that the loss of anyone would cause negative impacts on the regional flora and consequently to the associated biodiversity.
Resumo:
AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CONCLUSIONS: This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.
Resumo:
The synanthropic index and other ecological aspects of the Muscidae family were evaluated through simultaneous monthly sampling in three different environments (urban, rural and forest) using van Someren-Rydon traps baited with human faeces, chicken viscera and decomposing fish and onion. Four traps were set up in each environment (one per bait item) for 48 hours per month, with samples taken every 12 hours. A total of 5726 specimens were collected, belonging to 19 species and 13 genera. Brontaea normata (+99,9), Brontaea quadristigma (+96,9), Synthesiomyia nudiseta (+96,5), Ophyra aenescens (+96,2), Musca domestica (+95,7) and Atherigona orientalis (+93,8) had the highest synanthropic indices, showing a marked preference for human environments. The most abundant species were B. normata (24,31%), Biopyrellia bipuncta (20,60%) and Pseudoptilolepis nigripoda (15,82%), the latter two showed a preference for uninhabited areas. A total of 11 new records for Colombia were found: Ophyra aenescens, Cyrtoneuropsis pararescita, Morellia basalis, Neomuscina dorsipuncta, Biopyrellia bipuncta, Pseudoptilolepis nigripoda, Neomuscina instabilis, Neomuscina currani, Polietina orbitalis, Neomuscina pictipennis and Cyrtoneuropsis maculipennis. Except for the first four species, the remainder presented negative synantrophy indexes (from minor to major), which would allow to use them as ecological indicators of the disturbance degree of dry forests in Colombia.
Resumo:
Diversity of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. We report on the richness of galling insects in the vegetation of caatinga of Pernambuco state, Brazil. We recorded 64 different types of galls collected primarily from leaves and stems of 48 species of host plants belonging to 17 families and 31 genera. The most common gall morphological types were spheroid and discoid, glabrous, predominantly green and with one chamber. The main gall inducing taxon was the Cecidomyiidae (Diptera). The results of this study contribute to existing knowledge of galling insect and host-plant diversity in caatinga.
Resumo:
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.
Resumo:
Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m) were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.
Resumo:
The social wasp nests were quantified in three different plant physiognomies (forested Caatinga, shrubby Caatinga, and agricultural systems) to analyze the effect of environmental seasonality and plant physiognomy on the richness, nest abundance, and species composition of social wasps in the region of tropical dry forest of Brazil. The forested Caatinga physiognomy had the greatest richness of species (S = 16), followed by shrubby Caatinga (S 13) and by agricultural system (S = 12). The first axis of detrended correspondence analysis (DCA) explained 67.8% of the variability and shows a gradient of the fauna from agricultural system and shrubby Caatinga to forested Caatinga. In the first axis, wet season scores were much higher than those for the dry season in forested Caatinga. The second axis explained 18.7% of the variability and shows a separation of samples collected during the wet or the dry periods in shrubby Caatinga. This separation was less evident in the agricultural system. Variations in nest abundance were more intense in arbustive caatinga (45% decrease in number of active nests in the dry period), moderate in forested Caatinga (24% decrease in number of active nests in the dry period), and low in agricultural systems (8% decrease in the dry period).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study is to gain a quantitative understanding of land use and land cover change (LULCC) that have occurred in a rural Nicaraguan municipality by analyzing Landsat 5 Thematic Mapper (TM) images. By comparing the potential extent of tropical dry forest (TDF) with Landsat 5 TM images, this study analyzes the loss of this forest type on a local level for the municipality of San Juan de Cinco Pinos (63.5 km2) in the Department of Chinandega. Change detection analysis shows where and how land use has changed from 1985 to the present. From 1985 to 2011, nearly 15% of the TDF in San Juan de Cinco Pinos was converted to other land uses. Of the 1434.2 ha of TDF that was present in 1985, 1223.64 ha remained in 2011. The deforestation is primarily a result of agricultural expansion and fuelwood extraction. If current rates of TDF deforestation continue, the municipality faces the prospect of losing its forest cover within the next few decades.
Resumo:
The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the dry Tumbesian forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.
Resumo:
This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.
Resumo:
It was evaluated the effect of two different sources of local inocula from two contrasting sites (mature forest, pasture) of arbuscular mycorrhizae fungi (AMF) and a non-mycorrhizal control on the plant growth of six woody species differing in functional characteristics (slow-, intermediate- and fast-growth), when introduced in a seasonally tropical dry forest (STDF) converted into abandoned pasture. Six plots (12 X 12m) were set as AMF inoculum source. Six replicates of six different species arranged in a Latin Square design were set in each plot. Plant height, cover area and the number of leaves produced by individual plant was measured monthly during the first growing season in each treatment. Species differed in their ability to benefit from AMF and the largest responsiveness in plant height and leaf production was exhibited by the slow-growing species Swietenia humilis, Hintonia latiflora and Cordia alliodora. At the end of the growing season (November), the plant height of the fast growing species Tabebuia donnel-smithii, Ceiba pentandra and Guazuma ulmifolia were not influenced by AMF. However, inocula of AMF increased leaf production of all plant species regardless the functional characteristics of the species, suggesting a better exploitation of above-ground space and generating a light limited environment under the canopy, which contributed to pasture suppression. Inoculation of seedlings planted in abandoned pasture areas is recommended for ecological restoration due to the high responsiveness of seedling growth in most of species. Use of forest inoculum with its higher diversity of AMF could accelerate the ecological restoration of the above and below-ground comunities.
INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS
Resumo:
In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.
Resumo:
Understanding tropical forest succession is critical for the development of tropical forest conservation strategies worldwide, given that tropical secondary forests can be considered the forests of the future. Tropical dry forests (TDF) are among the most threatened tropical ecosystems, there are more secondary forests and forest restoration efforts that require a better understanding of successional processes. The main goal of this synthesis for this special issue on the ecology and management of tropical dry forests in the Americas is to present a summarized review of the current knowledge of the ecology and management implications associated to TDF succession. We explore specific issues associated to tropical dry forest succession with emphasis on the use of chronosequences, plant diversity and composition, plant phenology and remote sensing, pollination, and animal-plant interactions; all under the integrating umbrella of ecosystem succession. We also emphasize the need to conduct socio-ecological research to understand changes in land-use history and its effects on succession and forest regeneration of TDF. We close this paper with some thoughts and ideas associated with the strong need for an integrating dimension not considered until today: the role of cyberinfrastructure and eco-informatics as a tool to support sound conservation, management and understanding of TDF in the Americas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
La importancia del proceso de dispersión de semillas en la estructura y dinámica de los ecosistemas es ampliamente reconocida. Sin embargo, para los bosques tropicales estacionalmente secos los estudios relacionados con este proceso son aún escasos y dispersos en comparación con los bosques tropicales lluviosos. En este trabajo se estudió la importancia de los síndromes de dispersión de semillas en la estructuración de comunidades, mediante el análisis de los patrones de dispersión de semillas en el espacio y tiempo para comunidades de leñosas en los bosques secos del suroccidente Ecuatoriano. Esta área forma parte de la región Tumbesina, una de las áreas de endemismo más importantes del mundo, pero también uno de los hotspots más amenazados. El clima se caracteriza por una estación seca que va de mayo a noviembre y una estación lluviosa que se extiende desde diciembre a abril. Para toda esta zona se estima una temperatura promedio anual entre 20° y 26°C y una precipitación promedio anual entre 300 y 700 mm. El trabajo de campo se desarrolló entre febrero de 2009 y septiembre de 2012. El primer paso fue la recopilación de información sobre las especies leñosas nativas de los bosques secos del suroccidente de Ecuador, que permitiera asignar a cada especie a un síndrome de dispersión para determinar el espectro de síndromes de dispersión de semillas. Luego, utilizando la información disponible de 109 parcelas establecidas previamente a lo largo de cuatro cantones de la provincia de Loja que conservan bosques secos en buen estado, se analizó la relación entre el síndrome de dispersión y condiciones ambientales. La relación de los síndromes de dispersión con los patrones espaciales de las especies y con los patrones de la lluvia y banco de semillas se estudió dentro de una parcela permanente de 9 ha, en la Reserva Ecológica Arenillas. Dentro de esta parcela se estableció un transecto de aproximadamente 3,4 km, que se recorrió mensualmente para colectar excretas de cérvidos y analizar el rol de este grupo como dispersor de semillas. Una gran variedad de plantas en los bosques secos tropicales del suroccidente de Ecuador requirió la asistencia de animales para la dispersión de semillas. Sin embargo, un análisis del espectro de dispersión considerando no solo la riqueza, sino también la abundancia relativa de especies, permitió determinar que a pesar de la alta variedad de especies zoócoras, la mayor parte de la comunidad correspondía a individuos anemócoros, que no proveen ninguna recompensa para la dispersión por animales. Este patrón puede deberse a la abundancia relativa de hábitats adecuados para especies con diferente síndrome de dispersión. Las condiciones ambientales afectaron la estructura del espectro de dispersión en la comunidad de bosque seco neotropical estudiada. El análisis de la importancia relativa del síndrome de dispersión y de la heterogeneidad espacial en la formación de patrones espaciales de árboles adultos permitió determinar que la heterogeneidad ambiental ejercía un efecto adicional (y en algunos el único) en la formación de patrones agregados de la mayoría de especies estudiadas. Los resultados señalaron diferencias en los patrones espaciales de las especies dependiendo del síndrome de dispersión, pero también una gran variación en los patrones espaciales incluso entre especies del mismo síndrome de dispersión. El análisis simultáneo de los patrones de la lluvia de semillas y banco de semillas de una comunidad de leñosas y su relación con la vegetación establecida indicaron que la lluvia de semillas era temporalmente variable en número de especies y abundancia de semillas, y dependía del síndrome de dispersión. El síndrome de dispersión también influyó en la formación de bancos de semillas, siendo las especies con capacidad de dispersión limitada (autócoras) las de mayor riqueza de especies y abundancia de semillas. Los cérvidos también se consideraron como un elemento clave en el proceso de dispersión de semillas. Al menos ocho especies leñosas fueron dispersadas legítimamente vía endozoócora. La mayoría de las especies dispersadas presentaron diásporas sin adaptaciones obvias para la dispersión, por lo que la ingestión de semillas por cérvidos se constituye en una vía potencial para la dispersión de sus semillas a largas distancias y, con ello, mejora la posibilidad de colonizar nuevos sitios y mantener el flujo genético. Los resultados de este estudio aportan nuevas evidencias para el entendimiento de la importancia de los procesos de dispersión de semillas en la estructura de los bosques secos neotropicales. Uno de los principales hallazgos a partir de estos cuatro capítulos es que los patrones espaciales de las especies, así como las estrategias que utilizan para dispersarse y hacer frente a las condiciones adversas (es decir, lluvia o banco de semillas) llevan consigo un efecto del síndrome de dispersión, y que la intensidad ese efecto depende a la vez de las condiciones ambientales del lugar. ABSTRACT The importance of seed dispersal process in the estructuring and ecosystem dynamic is widely recongnized. However, for seasonally tropical dry forest studies related to this process are still scarce and scattered compared to tropical rain forests. The present research deals with the importance of seed dispersal syndromes as a driver in the community structure, focusing its attention to temporal and spatial patterns of seed dispersal in woody communities of seasonally dry forest at Southwestern Ecuador. This area is part of the Tumbesian region, one of the most important areas of endemism, but also one of the most threatened areas around the world. Climate is characterized by a dry season from May to November, and a rainy season from December to April. For the whole area an average temperature between 20 ° and 26 ° C, and an average annual rainfall between 300 and 700 mm are estimated. Fieldwork was carried out between February 2009 and September 2012. During a first step information about native woody species of dry forests of southwestern Ecuador was gathered, enabling to assign a dispersal syndrome to each species to determine the seed dispersal spectrum. In a second step, available information from 109 established plots along four municipalities in Loja province, which hold the highest and best conserved dry forest remanants, was analyzed to establish the relationship between dispersal syndromes and environmental conditions. The relationships between dispersal syndromes and species spatial patterns; and between dispersal syndromes and seed rain and seed bank patterns, were studied within a permanent plot of 9 ha, in the Arenillas Ecological Reserve. Within this plot one transect of approximately 3.4 km was set to collect monthly deer droppings, which were used to latter analyze the rol of this group as seed dispersers. The results showed that a large variety of plants in tropical dry forest of Southwestern Ecuador require animal assistance to dispers their seeds. However, an analysis of seed dispersal spectrum considering not only species richness, but also the relative abundance of species, allowed to determine that despite the high variety of zoochorous species, most individuals in the community corresponds to anemochoruos species. This shift may be due to the relative abundance of habitats that are suitable for species with different dispersal syndromes. Moreover, quantitative data analysis showed that environmental conditions affect the structure of seed dispersal spectrum in the studied community. The analysis of relative importance of dispersal syndrome, and the environmental heterogeneity on formation of adult trees spatial patterns, indicated that environmental heterogeneity exert an additional (or was the only) effect limiting the distribution of most species in this forest. The findings showed differences in spatial patterns related to dispersal syndrome, but also showed a large variation in spatial patterns even among species sharing the same dispersal syndrome. Simultaneous analysis of seed rain and seed bank patterns of a woody community, and their relationship with established vegetation, suggested that seed rain is temporally variable in species number and seeds abundance, and that variation is related to the dispersal syndrome. Dispersal syndrome also influenced on the formation of seed banks, being species with limited dispersal abilities (autochorous) the ones with highest species richness and seed abundance. Deer were found as a key element in the seed dispersal process. At least to eight woody species were dispersed legitimately by ingestion. Diaspores of most dispersed species had no obvious adaptations to seed dispersal, therefore, seed ingestion by deer represents a potential pathway for long-distance dispersal, and hence, improves the chances to colonizing new sites and to maintain gene flow. Overall, these results provide new evidence for understanding the importance of seed dispersal processes in the structure of Neotropical dry forests. One of the major findings from these four chapters is that spatial patterns of species, and the strategies used to disperse their seeds and to deal with the adverse conditions (i.e. seed rain or seed bank) are related with dispersal syndromes, and the intensity of that relation depends in turn, on environmental conditions.