925 resultados para Searches
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb−1 from proton--proton collisions at a centre-of-mass energy of s√ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan(beta) between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Resumo:
A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the s√=8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Furthermore, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.
Resumo:
This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton--proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb−1 of collisions at a centre-of-mass energy of s√=8 TeV, although in some case an additional 4.7 fb−1 of collision data at s√=7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.
Resumo:
Searches for both resonant and non-resonant Higgs boson pair production are performed in the hh→bbττ,γγWW∗ final states using 20.3 fb−1 of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence level upper limits on the production cross sections are set. These results are then combined with the published results of the hh→γγbb,bbbb analyses. An upper limit of 0.69 (0.47) pb on the non-resonant Standard Model like hh production is observed (expected), corresponding to 70 (48) times of the SM gg→hh cross section. For production via narrow resonances, cross section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model.
Resumo:
We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.
Resumo:
Background: It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes. Results: Here we used simulations of protein sequences to examine the capacity of Blast to detect proteins of diverse evolutionary rates in the different species of an eukaryotic phylogenetic tree that included metazoans, fungi and plants. We simulated the evolution of protein genes with the same evolutionary rates than those observed in functional mammalian genes and with among-site rate heterogeneity. Under these conditions, we found that only a very small percentage of simulated ancestral eukaryotic proteins was affected by the Blast artifact. We show that the good detectability of Blast is due to the heterogeneity of protein evolutionary rates at different sites, since only a small conserved motif in a sequence suffices to detect its homologues. Our results indicate that Blast, at least when applied within eukaryotes, only misses homologues of extremely fast-evolving sequences, which are rare in the mammalian genome, as well as sequences evolving homogeneously or pseudogenes.Conclusion: Although great care should be exercised in the recognition of remote homologues, most functional mammalian genes can be detected in eukaryotic genomes by Blast. That is, the majority of functional mammalian genes are not as fast as for not being detected in other metazoans, fungi or plants, if they had been present in these organisms. Thus, the correlation previously found between age and rate seems not to be due to a pure Blast artifact, at least for mammals. This may have important implications to understand the mechanisms by which novel genes originate.
Resumo:
Searching for matches between large collections of short (14-30 nucleotides) words and sequence databases comprising full genomes or transcriptomes is a common task in biological sequence analysis. We investigated the performance of simple indexing strategies for handling such tasks and developed two programs, fetchGWI and tagger, that index either the database or the query set. Either strategy outperforms megablast for searches with more than 10,000 probes. FetchGWI is shown to be a versatile tool for rapidly searching multiple genomes, whose performance is limited in most cases by the speed of access to the filesystem. We have made publicly available a Web interface for searching the human, mouse, and several other genomes and transcriptomes with oligonucleotide queries.
Resumo:
The results of searches for B0(s)→J/ψ pp¯ and B + → J/ψ p p¯ π+ decays are reported. The analysis is based on a data sample, corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, collected with the LHCb detector. An excess with 2.8 σ significance is seen for the decay B0s→J/ψ pp¯ and an upper limit on the branching fraction is set at the 90 % confidence level: B(B0s→J/ψ pp¯) < 4.8 × 10−6, which is the first such limit. No significant signals are seen for B 0 → J/ψ p p¯ and B + → J/ψ p p¯ π + decays, for which the corresponding limits are set: B(B0→J/ψ pp¯) < 5.2 × 10−7, which significantly improves the existing limit; and B(B+→J/ψ pp¯π+) < 5.0 × 10−7, which is the first limit on this branching fraction.
Resumo:
We present the results of stereoscopic observations of the satellite galaxy Segue 1 with the MAGIC Telescopes, carried out between 2011 and 2013. With almost 160 hours of good-quality data, this is the deepest observational campaign on any dwarf galaxy performed so far in the very high energy range of the electromagnetic spectrum. We search this large data sample for signals of dark matter particles in the mass range between 100 GeV and 20 TeV. For this we use the full likelihood analysis method, which provides optimal sensitivity to characteristic gamma-ray spectral features, like those expected from dark matter annihilation or decay. In particular, we focus our search on gamma-rays produced from different final state Standard Model particles, annihilation with internal bremsstrahlung, monochromatic lines and box-shaped signals. Our results represent the most stringent constraints to the annihilation cross-section or decay lifetime obtained from observations of satellite galaxies, for masses above few hundred GeV. In particular, our strongest limit (95% confidence level) corresponds to a ~ 500 GeV dark matter particle annihilating into τ+τ−, and is of order langleσannvrangle simeq 1.2 × 10−24 cm3 s−1 a factor ~ 40 above the langleσannvrangle simeq thermal value.
Resumo:
Every year a large number of birds die when they collide with windows. The actual number is difficult to ascertain. Previous attempts to estimate bird-window collision rates in Canada relied heavily on a prior citizen-science study that used memory-based surveys. Such an approach to data collection has many potential biases. We built upon this study and its recommendations for future research by creating a citizen-science program that actively searched for collision evidence at houses and apartments for an extended period with the objective to see how standardized approaches to data collection compared with memory recall. Absolute collision estimates as well as relative differences were compared between residence types in the two studies, and we found considerable differences in absolute values for collisions but similar rankings of collision rates between residence types. Collision recall rates in our study (56.5%) were very similar those in the prior 2012 study, where 50.5% of participants remembered a bird colliding with a window at some time in the past. Fatality estimates, however, were 1.4 times higher in the 2012 study than in our study based on standardized searches. Rural houses with a bird feeder consistently had the highest number of collisions. This suggests that memory recall surveys may be a useful tool for understanding the relative importance of different risk factors causing bird-window collisions.
Resumo:
Cytochrome P450 (CYP450) is a class of enzymes where the substrate identification is particularly important to know. It would help medicinal chemists to design drugs with lower side effects due to drug-drug interactions and to extensive genetic polymorphism. Herein, we discuss the application of the 2D and 3D-similarity searches in identifying reference Structures with higher capacity to retrieve Substrates of three important CYP enzymes (CYP2C9, CYP2D6, and CYP3A4). On the basis of the complementarities of multiple reference structures selected by different similarity search methods, we proposed the fusion of their individual Tanimoto scores into a consensus Tanimoto score (T(consensus)). Using this new score, true positive rates of 63% (CYP2C9) and 81% (CYP2D6) were achieved with false positive rates of 4% for the CYP2C9-CYP2D6 data Set. Extended similarity searches were carried out oil a validation data set, and the results showed that by using the T(consensus) score, not only the area of a ROC graph increased, but also more substrates were recovered at the beginning of a ranked list.
Resumo:
We review the present searches for scalar leptoquarks and the potential of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation leptoquarks.