903 resultados para Search and retrieval


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a document discovery tool based on Conceptual Clustering by Formal Concept Analysis. The program allows users to navigate e-mail using a visual lattice metaphor rather than a tree. It implements a virtual. le structure over e-mail where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in e-mail discovery. The system described provides more flexibility in retrieving stored e-mails than what is normally available in e-mail clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems and aid knowledge discovery in document collections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We build a system to support search and visualization on heterogeneous information networks. We first build our system on a specialized heterogeneous information network: DBLP. The system aims to facilitate people, especially computer science researchers, toward a better understanding and user experience about academic information networks. Then we extend our system to the Web. Our results are much more intuitive and knowledgeable than the simple top-k blue links from traditional search engines, and bring more meaningful structural results with correlated entities. We also investigate the ranking algorithm, and we show that the personalized PageRank and proposed Hetero-personalized PageRank outperform the TF-IDF ranking or mixture of TF-IDF and authority ranking. Our work opens several directions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report describes the work carried out in a project within the ERASMUS programme. The objective of this project was the Integration of an Automatic Warehouse in a Discrete-Part Automation System. The discrete-part automation system located at the LASCRI (Critical Systems) laboratory at ISEP was extended with automatic storage and retrieval of the manufacturing parts, through the integration of an automatic warehouse and an automatic guided vehicle (AGV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and testing of a robotic capsule for search and rescue operations at sea. This capsule is able to operate autonomously or remotely controlled, is transported and deployed by a larger USV into a determined disaster area and is used to carry a life raft and inflate it close to survivors in large-scale maritime disasters. The ultimate goal of this development is to endow search and rescue teams with tools that extend their operational capability in scenarios with adverse atmospheric or maritime conditions.