919 resultados para Sea turtles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four sea turtle species found in Malaysia are the leatherback, olive ridley, green and hawksbill. The threats to these species are acute. Populations of leatherback, olive ridley and hawksbill turtles are on the brink of collapse – threatening a biodiversity crisis in Malaysia and the region. This proceedings contains 8 technical papers presented at a workshop convened in Kijal, Terengganu to chart new directions in the conservation of Malaysia's critically endangered sea turtles and to reverse population decline. They represent a wide range of issues from aspects of biology to a review of 40 years of sea turtle conservation. A paper on the socioeconomic linkages and impacts of fisheries was also included as the workshop adopted a multidisciplinary approach to address the issues. Two case studies, including successful restoration examples from international experiences and restoration efforts in Sabah, pave the way for enhancing turtle conservation in the country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight hundred sixty-five records of Kemp's ridley sea turtles (Lepidochelys kempi) reported from Texas between the late 1940's to April 1990 were compiled from six data bases and the literature, then plotted on a series of Texas maps. Four categories of Kemp's ridleys are identified throughout the atlas: head-started (turtles that are raised in captivity their first year of life), wild, historical (pre-1980), and nesters. Geographic, seasonal, and size distributions of the turtle categories are plotted by regions. Most Kemp's ridleys were reported from the northeast and central Texas coast. They were reported from both inshore (landward of barrier islands) and offshore (seaward of barrier islands). Scattered nestings occurred in the central to southern regions. Kemp's ridleys were found more often during the spring and summer. A total of 546 turtle records contained measurements; most were 20-59.9 cm curved carapace length and considered sub-adults. Comparison of distributions of head-started and wild Kemp's ridleys suggests head-started Kemp's ridleys inhabit the same areas as wild Kemp's ridleys. (PDF file contains 56 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trawling was conducted in the Charleston, South Carolina, shipping channel between May and August during 2004–07 to evaluate loggerhead sea turtle (Caretta caretta) catch rates and demographic distributions. Two hundred and twenty individual loggerheads were captured in 432 trawling events during eight sampling periods lasting 2–10 days each. Catch was analyzed by using a generalized linear model. Data were fitted to a negative binomial distribution with the log of standardized sampling effort (i.e., an hour of sampling with a net head rope length standardized to 30.5 m) for each event treated as an offset term. Among 21 variables, factors, and interactions, five terms were significant in the final model, which accounted for 45% of model deviance. Highly significant differences in catch were noted among sampling periods and sampling locations within the channel, with greatest catch furthest seaward consistent with historical observations. Loggerhead sea turtle catch rates in 2004–07 were greater than in 1991–92 when mandatory use of turtle excluder devices was beginning to be phased in. Concurrent with increased catch rates, loggerheads captured in 2004–07 were larger than in 1991–92. Eighty-five percent of loggerheads captured were ≤75.0 cm straight-line carapace length (nuchal notch to tip of carapace) and there was a 3.9:1 female-to-male bias, consistent with limited data for this location two decades earlier. Only juvenile loggerheads ≤75.0 cm possessed haplotypes other than CC-A01 or CC-A02 that dominate in the region. Six rare and one un-described haplotype were predominantly found in June 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet analysis of 52 loggerhead sea turtles (Caretta caretta) collected as bycatch from 1990 to 1992 in the high-seas driftnet fishery operating between lat. 29.5°N and 43°N and between long. 150°E and 154°W demonstrated that these turtles fed predominately at the surface; few deeper water prey items were present in their stomachs. The turtles ranged in size from 13.5 to 74.0 cm curved carapace length. Whole turtles (n =10) and excised stomachs (n= 42) were frozen and transported to a laboratory for analysis of major faunal components. Neustonic species accounted for four of the five most common prey taxa. The most common prey items were Janthina spp. (Gastropoda); Carinaria cithara Benson 1835 (Heteropoda); a chondrophore, Velella velella (Hydrodia); Lepas spp. (Cirripedia), Planes spp. (Decapoda: Grapsidae), and pyrosomas (Pyrosoma spp.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kemp’s ridley sea turtle, Lepidochelys kempi, was on the edge of extinction owing to a combination of intense egg harvesting and incidental capture in commercial fishing trawls. Results from a cooperative conservation strategy initiated in 1978 between Mexico and the United States to protect and restore the Kemp’s ridley turtle at the main nesting beach at Rancho Nuevo, Tamaulipas, Mexico are assessed. This strategy appears to be working as there are signs that the species is starting to make a recovery. Recovery indicators include: 1) increased numbers of nesting turtles, 2) increased numbers of 100+ turtle nesting aggregations (arribadas), 3) an expanding nesting season now extending from March to August, and 4) significant nighttime nesting since 2003. The population low point at Rancho Nuevo was in 1985 (706 nests) and the population began to significantly increase in 1997 (1,514 nests), growing to over 4,000 nests in 2004. The size and numbers of arribadas have increased each year since 1983 but have yet to exceed the 1,000+ mark; most arribadas are still 200–800+ turtles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic surveys, along with opportunistic sightings, have provided important information on sea turtle (Cheloniidae and Dermochelydae) distributions, knowledge which can help reduce the risk of harmful human interaction. In 1991 and 1992, the Marine Recreational Fishery Sta- tistics Survey (MRFSS) of the National Ma- rine Fisheries Service, NOAA, provided a unique opportunity to gain additional, synoptic information on the spatial and temporal distribution of sea turtles along the U.S. Atlantic and Gulf of Mexico coasts by asking recreational anglers if they had observed a sea turtle on their fishing trip. During the spring and summer months of those years, as water temperatures warmed, the MRFSS documented an increase in sea turtle sightings in inshore waters and in a northward direction along the U.S. Atlantic Coast and in a westward direction along the northern Gulf of Mexico. This pattern reversed in the late summer and fall months as water temperatures cooled, with sea turtles concentrating along Georgia and both coasts of Florida. Although the MRFSS did not provide species or size composition of sea turtles sighted, and effort varied depending upon location of fishing activity and time of year anglers were queried, it did provide an additional and useful means of ascertaining spatial and temporal distributions of sea turtles along these coasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management of marine turtles presents various challenges due to their highly migratory nature, which includes major ontogenetic habitat shifts, seasonal movements between feeding grounds, and migrations to and from breeding grounds. Further, sea turtle spatial distributions often differ in species-specific ways during similar temporal periods. Various approaches combine to give valuable insights into spatial and temporal distributions of sea turtles and provide critical knowledge for understanding and protecting these imperiled species. Here we summarize and synthesize available data that document sea turtle occurrences in waters from the Florida Straits (lat. 24°28´N) north to the latitude of Jacksonville, Fla. (lat. 30°20´ N), including waters up to 150 km offshore, termed Florida’s Atlantic waters for this review. We summarize 951 satellite tracked sea turtles, 288 of which crossed into Florida’s Atlantic waters. All species of sea turtles inhabiting the Atlantic Ocean were found to use Florida Atlantic waters. Sea turtles use Florida’s Atlantic waters year-round, yet distributions of individual species vary seasonally. We provide a current synthesis describing the spatial and temporal distributions of the five sea turtles species using Florida’s Atlantic waters and suggest areas where further study may be warranted.