992 resultados para Sea state


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20/spl deg/C, decreasing to 0.25 K/psu at 0/spl deg/C, comparable to that to the wind speed /spl sim/0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wind and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an "effective wind speed" that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Final report; issued June 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item 275.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shipping list no.: 95-0073-P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea state can influence the turbulent air–sea exchanges, especially the momentum flux, by modifying the sea-surface roughness. The high-resolution non-hydrostatic convection-permitting model MESO-NH is used here to investigate the impact of a more realistic representation of the waves on heavy precipitation during the Intense Observation Period (IOP) 16a of the first HyMeX Special Observation Period (SOP1). Several quasi-stationary mesoscale convective systems developed over the western Mediterranean region, two of them over the sea, and resulted in heavy precipitation on the French and Italian coasts on 26 October 2012. Three different bulk parametrizations are tested in this study: a reference case (NOWAV) without any wave effect, a parametrization taking into account theoretical wave effects (WAV) and a last one with realistic wave characteristics from the MFWAM analyses (WAM). Using a realistic wave representation in WAM significantly increases the roughness length and the friction velocity with respect to NOWAV and WAV. The three MESO-NH sensitivity experiments of the IOP16a show that this surface-roughness increase in WAM generates higher momentum fluxes and directly impacts the low-level dynamics of the atmosphere, with a slowdown of the 10 m wind, when and where the wind speed exceeds 10 m s−1 and the sea state differs from the idealized one. The turbulent heat fluxes are not significantly influenced by the waves, these fluxes being controlled by the moisture content rather than by the wind speed in the simulations. Although the convective activity is globally well reproduced by all the simulations, the difference in the low-level dynamics of the atmosphere influences the localization of the simulated heavy precipitation. Objective evaluation of the daily rainfall amount and of the 10 m wind speed against the observations confirms the positive impact of the realistic wave representation on this simulation of heavy precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work presents analyses of the atmospheric conditions and the hindcast of the surface wave field when six extratropical cyclones formed and displaced over the South Atlantic Ocean (10degreesN, 60degreesS; 75degreesW, 15degreesE) between April and September 1999. These events caused high sea waves associated with hazardous conditions along the south and southeast coast of Brazil. The meteorological composite fields for these cyclones show a strong near-surface wind velocity (up to 14 m s(-1)) during its mature phase. The sea-state wave hindcast was obtained using a third-generation wave model forced by the 10-m above ground level wind field from the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset. Closer to the south and southeast Brazilian coast, the hindcast results showed significant wave heights of up to 5 m in some of the events. The wave hindcast results for the significant wave height were compared against satellite altimeter data at 6 h intervals. The statistical index showed a systematic underestimation of the significant wave height by 0.5 m. The correlation between wave hindcast and altimeter measurements was greater than 90%, showing a good phase reproduction by the wave model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forms of phosphorus were determined for the first time in the area under study. Based on the ratio between organic and inorganic forms of phosphorus, it is concluded that sorption processes in the thin surface layer and photosynthetic processes in surface water are of the same intensity. Extremely high values of total phosphorus in the thin layer may be indicators of water pollution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides a description of the wave climate off the Brazilian coast based on an eleven-year time series (Jan/1997-Dec/2007) obtained from the NWW3 operational model hindcast reanalysis. Information about wave climate in Brazilian waters is very scarce and mainly based on occasional short-term observations, the present analysis being the first covering such temporal and spatial scales. To define the wave climate, six sectors were defined and analyzed along the Brazilian shelf-break: South (W1), Southeast (W2), Central (W3), East (W4), Northeast (W5) and North (W6). W1, W2 and W3 wave regimes are determined by the South Atlantic High (SAH) and the passage of synoptic cold fronts; W4, W5 and W6 are controlled by the Intertropical Convergence Zone (ITCZ) and its meridional oscillation. The most energetic waves are from the S, generated by the strong winds associated to the passage of cold fronts, which mainly affect the southern region. Wave power presents a decrease in energy levels from south to north, with its annual variation showing that the winter months are the most energetic in W1 to W4, while in W5 and W6 the most energetic conditions occur during the austral summer. The information presented here provides boundary conditions for studies related to coastal processes, fundamental for a better understanding of the Brazilian coastal zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de especialização em Hidráulica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The knowledge of the evapotranspiration (ETc) and crop coefficient (Kc) is fundamental to plan and to manage the irrigation of any crop. The aim of this study was to determine the daily and hourly evapotranspiration of drip irrigated watermelon (Citrullus Lanatus, var. Crimson Sweet) and crop coefficient (Kc) in each crop development phase. The experiment was carried out in an experimental area of 1.27 ha of Embrapa Mid-North, localized in Parnaíba (02°54'S, 41°47'W and 46 m above of sea), State of Piauí, Brazil, from September to November, 2006. Electronic weighing lysimeters of 1.5 m x 1.5 m wide and long and 1.0 m deep were used to obtain the evapotranspiration. The plants were drip irrigated with a lateral row per plant row and drippers spaced 0.5 m from each other. The reference evapotranspiration (ETo) was estimated using the Penman-Monteith equation from the climatic data obtained by electronic sensors. The total evapotranspiration during the watermelon crop cycle cultivated in the state of Piauí was 233.87 mm, with mean values of 3.7 mm day-1, minimum of 1.18 and maximum of 8.14 mm day-1. The Kc of the drip irrigated watermelon was 0.18 in the initial stage of crop growth; 0.18 to 1.3, in crop development stage; 1.3 in the intermediate stage and 0.43 in the final stage.