851 resultados para Scoliotic trunk shape
Resumo:
Persistence of external trunk asymmetry after scoliosis surgical treatment is frequent and difficult to predict by clinicians. This is a significant problem considering that correction of the apparent deformity is a major factor of satisfaction for the patients. A simulation of the correction on the external appearance would allow the clinician to illustrate to the patient the potential result of the surgery and would help in deciding on a surgical strategy that could most improve his/her appearance. We describe a method to predict the scoliotic trunk shape after a spine surgical intervention. The capability of our method was evaluated using real data of scoliotic patients. Results of the qualitative evaluation were very promising and a quantitative evaluation based on the comparison of the simulated and the actual postoperative trunk surface showed an adequate accuracy for clinical assessment. The required short simulation time also makes our approach an eligible candidate for a clinical environment demanding interactive simulations.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.
Resumo:
One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.
Resumo:
The value of the lateral bending test is important in the assessment of spinal curve mobility and prediction of surgical outcome in the treatment of adolescent idiopathic scoliosis (AIS). However, radiographic bending tests are unable to assess the reducibility of trunk asymmetry. This study aims to exploit surface topography measurement in order to evaluate the changes in shape of the trunk (a) between bending and neutral standing positions, and (b) between standing pre- and post-operative visits, in a cohort of adolescents with AIS having undergone surgical correction; and to correlate the differences measured in cases (a) and (b). Our cohort includes 13 patients with right thoracic AIS. Each patient had their 3D trunk surface digitized with a multi-head InSpeck system in standing posture (at the pre-op and post-op visits) and in maximum voluntary right and left bending (at the pre-op visit). We developed a novel trunk shape analysis method which produces a set of inclined trunk cross-sections allowing comparison between different postures. Two asymmetry indices, trunk rotation (TR) and back surface rotation (BSR), were computed in all cases and a statistical analysis was performed. Our correlation study (Pearson test) showed fair correlations in most cases between the changes in side-bending and those post-surgery, with the strongest relationship (p-value < 0.01) when combining the TR measurements from both bendings. These results provide evidence that the bending test can be used to assess trunk asymmetry reducibility. The proposed approach could provide a non-invasive trunk asymmetry reducibility test for routine clinical use in AIS surgery planning.
Resumo:
Besides the spinal deformity, scoliosis modifies notably the general appearance of the trunk resulting in trunk rotation, imbalance, and asymmetries that constitutes patients' major concern. Existing classifications of scoliosis, based on the type of spinal curve as depicted on radiographs, are currently used to guide treatment strategies. Unfortunately, even though a perfect correction of the spinal curve is achieved, some trunk deformities remain, making patients dissatisfied with the treatment received. The purpose of this study is to identify possible shape patterns of trunk surface deformity associated with scoliosis. First, trunk surface is represented by a multivariate functional trunk shape descriptor based on 3-D clinical measurements computed on cross sections of the trunk. Then, the classical formulation of hierarchical clustering is adapted to the case of multivariate functional data and applied to a set of 236 trunk surface 3-D reconstructions. The highest internal validity is obtained when considering 11 clusters that explain up to 65% of the variance in our dataset. Our clustering result shows a concordance with the radiographic classification of spinal curves in 68% of the cases. As opposed to radiographic evaluation, the trunk descriptor is 3-D and its functional nature offers a compact and elegant description of not only the type, but also the severity and extent of the trunk surface deformity along the trunk length. In future work, new management strategies based on the resulting trunk shape patterns could be thought of in order to improve the esthetic outcome after treatment, and thus patients satisfaction.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
This paper provides an overview of work done in recent years by our research group to fuse multimodal images of the trunk of patients with Adolescent Idiopathic Scoliosis (AIS) treated at Sainte-Justine University Hospital Center (CHU). We first describe our surface acquisition system and introduce a set of clinical measurements (indices) based on the trunk's external shape, to quantify its degree of asymmetry. We then describe our 3D reconstruction system of the spine and rib cage from biplanar radiographs and present our methodology for multimodal fusion of MRI, X-ray and external surface images of the trunk We finally present a physical model of the human trunk including bone and soft tissue for the simulation of the surgical outcome on the external trunk shape in AIS.
Resumo:
Improving the appearance of the trunk is an important goal of scoliosis surgical treatment, mainly in patients' eyes. Unfortunately, existing methods for assessing postoperative trunk appearance are rather subjective as they rely on a qualitative evaluation of the trunk shape. In this paper, an objective method is proposed to quantify the changes in trunk shape after surgery. Using a non-invasive optical system, the whole trunk surface is acquired and reconstructed in 3D. Trunk shape is described by two functional measurements spanning the trunk length: the lateral deviation and the axial rotation. To measure the pre and postoperative differences, a correction rate is computed for both measurements. On a cohort of 36 scoliosis patients with the same spinal curve type who underwent the same surgical approach, surgery achieved a very good correction of the lateral trunk deviation (median correction of 76%) and a poor to moderate correction of the back axial rotation (median correction of 19%). These results demonstrate that after surgery, patients are still confronted with residual trunk deformity, mainly a persisting hump on the back. That can be explained by the fact that current scoliosis assessment and treatment planning are based solely on radiographic measures of the spinal deformity and do not take trunk deformity into consideration. It is believed that with our novel quantitative trunk shape descriptor, clinicians and surgeons can now objectively assess trunk deformity and postoperative shape and propose new treatment strategies that could better address patients' concern about their appearance. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Scoliosis is a 3D deformity of the spine and rib cage. Extensive validation of 3D reconstruction methods of the spine from biplanar radiography has already been published. In this article, we propose a novel method to reconstruct the rib cage, using the same biplanar views as for the 3D reconstruction of the spine, to allow clinical assessment of whole trunk deformities. This technique uses a semi-automatic segmentation of the ribs in the postero-anterior X-ray view and an interactive segmentation of partial rib edges in the lateral view. The rib midlines are automatically extracted in 2D and reconstructed in 3D using the epipolar geometry. For the ribs not visible in the lateral view, the method predicts their 3D shape. The accuracy of the proposed method has been assessed using data obtained from a synthetic bone model as a gold standard and has also been evaluated using data of real patients with scoliotic deformities. Results show that the reconstructed ribs enable a reliable evaluation of the rib axial rotation, which will allow a 3D clinical assessment of the spine and rib cage deformities.
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how AIS affects bone density distribution within the vertebrae. Existing pre-operative CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. This study demonstrated that AIS patients have a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. To the best of our knowledge, the only previous studies of bone density distribution in AIS are those of Périé et al [1,2], who reported a coronal plane ‘mechanical migration’ of 0.54mm toward the concavity of the scoliotic curve in the lumbar apical vertebrae of 11 scoliosis patients. This is comparable to the value of 0.8mm (4%) in our study, especially since our patients had more severe scoliotic curves. From a bone adaptation perspective, these results suggest that the axial loading on the scoliotic spine is strongly asymmetric.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how scoliosis affects bone density distribution within the vertebrae. In this study, existing CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. Five key bone density profile measures were identified from each normalised bone density distribution, and multiple regression analysis was performed to explore the relationship between bone density distribution and patient demographics (age, height, weight, body mass index (BMI), skeletal maturity, time since Menarche, vertebral level, and scoliosis curve severity). Results showed a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. At the apical vertebra, mean bone density at the left side (concave) cortical shell was 23.5% higher than for the right (convex) cortical shell, and cancellous bone density along the central 60% of the lateral path from convex to concave increased by 13.8%. The centre of mass of the bone density profile at the thoracic curve apex was located 53.8% of the distance along the lateral path, indicating a shift of nearly 4% toward the concavity of the deformity. These lateral bone density gradients tapered off when moving away from the apical vertebra. Multi-linear regressions showed that the right cortical shell peak bone density is significantly correlated with skeletal maturity, with each Risser increment corresponding to an increase in mineral equivalent bone density of 4-5%. There were also statistically significant relationships between patient height, weight and BMI, and the gradient of cancellous bone density along the central 60% of the lateral path. Bone density gradient is positively correlated with weight, and negatively correlated with height and BMI, such that at the apical vertebra, a unit decrease in BMI corresponds to an almost 100% increase in bone density gradient.
Resumo:
INTRODUCTION Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. METHODS Existing low dose CT scans were used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of female AIS patients with right-sided thoracic curves. Image processing software, ImageJ (v1.45 NIH USA) was used to reconstruct the torso segments and subsequently measure the torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral joint moments at each vertebral level were found by summing each of the torso segment masses above the required joint and multiplying it by the perpendicular distance to the centre of the disc. RESULTS AND DISCUSSION Twenty patients were included in this study with a mean age of 15.0±2.7 years and a mean Cobb angle 52±5.9°. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) %. Mean segmental torso mass increased inferiorly from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint moments during relaxed standing were typically 5-7Nm at the apex of the curve (Figure 1), with the highest apex joint of 7Nm. CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing [1]. Therefore joint moments produced by gravity will be greater than those calculated here. CONCLUSIONS Coronal plane joint moments as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. The body mass distributions calculated in this study can be used to estimate joint moments derived using other imaging modalities such as MRI and subsequently determine if a relationship exists between joint moments and progressive vertebral deformity.
Resumo:
La recherche de nouvelles voies de correction de la scoliose idiopathique a une longue histoire. Le traitement conventionnel de la scoliose idiopathique est présenté par le port du corset ou par la correction opératoire de la déformation. Depuis leur introduction, les deux méthodes ont prouvé leur efficacité. Cependant, malgré des caractéristiques positives évidentes, ces méthodes peuvent causer un nombre important d'effets indésirables sur la santé du patient. Les techniques sans fusion pour le traitement de la scoliose semblent être une alternative perspective de traitement traditionnel, car ils apportent moins de risques et des complications chirurgicales que les méthodes conventionnelles avec la conservation de la mobilité du disque intravertébral. Cependant, l'utilisation de techniques mentionnées exige une connaissance profonde de la modulation de croissance vertébrale. L'objectif principal de la présente étude est d'estimer le potentiel d'agrafes à l’AMF de moduler la croissance des vertèbres porcines en mesurant la croissance osseuse sur la plaque de croissance de vertèbres instrumentées en comparaison avec le groupe contrôle. La méthode est basée sur la loi de Hueter-Volkmann. Nous avons choisi NiTi agrafes à l’AMF pour notre étude et les porcs de race Landrace comme un animal expérimental. Les agrafes ont été insérés sur 5 niveaux thoracique de T6 à T11. En outre, les radiographies ont été prises toutes les 2 semaines. La présence d'agrafes en alliage à mémoire de forme a produit la création de courbes scoliotiques significatives dans 4 de 6 animaux chargés et le ralentissement considérable de la croissance osseuse (jusqu'à 35,4%) comparativement aux groupes contrôle et sham. L'étude a démontré in vivo le potentiel d'agrafes en alliage à mémoire de formes de moduler la croissance des vertèbres en créant des courbes scoliotiques sur les radiographies et en ralentissant le taux de croissance sur les plaques de croissance instrumenté. La position précise de l'agrafe est essentielle pour la modulation de croissance osseuse et le développement de la scoliose expérimentale.