1000 resultados para Science Majors
Resumo:
The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L.^ Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (n$\sb1$ = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (n$\sb2$ = 19) (at the beginning and end of the term).^ Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group on TOSRA scale two and biology knowledge. ANCOVAs did not indicate any significant differences on the post mean scores of the TOSRA or biology knowledge adjusted by differences in the pretest mean scores. Analysis of the research data did not show any significant correlation between attitudes toward science and biology knowledge. ^
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
The clinical education is an integral part of the Health Science majors’ curriculum programs of the University of Aveiro’s School of Health (i.e., Nursing, Physical Therapy, Radiology, Radiotherapy and Speech-Language Pathology) and aims to develop clinical competences in order to generate excellent health care professionals. The organization was based on the Ecological Model of Clinical-Reflective Training, which was characterized by inter-institutional interaction and student’s reflection on actions on a professional setting. This study encompassed two moments of clinical internships in the Nursing, Physical Therapy, Radiology and Radiotherapy majors. The Clinical Internship I provided the 123 students with a global view of the health care professional activities. The Clinical Internship II, with 119 students, developed competences of each health professional. Questionnaires with categorical scales from 1 to 5 evaluated the organization and efficiency of the two internships. The results revealed averages over 3 in all items. In conclusion, the Ecological Model of Clinical-Reflective Training was well accepted by students and clinical supervisors. Applications in the health care area were demonstrated.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as “Clickers”, improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
A review of the literature reveals few research has attempted to demonstrate if a relationship exists between the type of teacher training a science teacher has received and the perceived attitudes of his/her students. Considering that a great deal of time and energy has been devoted by university colleges, school districts, and educators towards refining the teacher education process, it would be more efficient for all parties involved, if research were available that could discern if certain pathways in achieving that education, would promote the tendency towards certain teacher behaviors occurring in the classroom, while other pathways would lead towards different behaviors. Some of the teacher preparation factors examined in this study include the college major chosen by the science teacher, the highest degree earned, the number of years of teaching experience, the type of science course taught, and the grade level taught by the teacher. This study examined how the various factors mentioned, could influence the behaviors which are characteristic of the teacher, and how these behaviors could be reflective in the classroom environment experienced by the students. The instrument used in the study was the Classroom Environment Scale (CES), Real Form. The measured classroom environment was broken down into three separate dimensions, with three components within each dimension in the CES. Multiple Regression statistical analyses examined how components of the teachers' education influenced the perceived dimensions of the classroom environment from the students. The study occurred in Miami-Dade County Florida, with a predominantly urban high school student population. There were 40 secondary science teachers involved, each with an average of 30 students. The total number of students sampled in the study was 1200. The teachers who participated in the study taught the entire range of secondary science courses offered at this large school district. All teachers were selected by the researcher so that a balance would occur in the sample between teachers who were education major versus science major. Additionally, the researcher selected teachers so that a balance occurred in regards to the different levels of college degrees earned among those involved in the study. Several research questions sought to determine if there was significant difference between the type of the educational background obtained by secondary science teachers and the students' perception of the classroom environment. Other research questions sought to determine if there were significant differences in the students' perceptions of the classroom environment for secondary science teachers who taught biological content, or non-biological content sciences. An additional research question sought to evaluate if the grade level taught would affect the students' perception of the classroom environment. Analysis of the multiple regression were run for each of four scores from the CES, Real Form. For score 1, involvement of students, the results showed that teachers with the highest number of years of experience, with masters or masters plus degrees, who were education majors, and who taught twelfth grade students, had greater amounts of students being attentive and interested in class activities, participating in discussions, and doing additional work on their own, as compared with teachers who had lower experience, a bachelors degree, were science majors, and who taught a grade lower than twelfth. For score 2, task orientation, which emphasized completing the required activities and staying on-task, the results showed that teachers with the highest and intermediate experience, a science major, and with the highest college degree, showed higher scores as compared with the teachers indicating lower experiences, education major and a bachelors degree. For Score 3, competition, which indicated how difficult it was to achieve high grades in the class, the results showed that teachers who taught non-biology content subjects had the greatest effect on the regression. Teachers with a masters degree, low levels of experience, and who taught twelfth grade students were also factored into the regression equation. For Score 4, innovation, which indicated the extent in which the teachers used new and innovative techniques to encourage diverse and creative thinking included teachers with an education major as the first entry into the regression equation. Teachers with the least experience (0 to 3 years), and teachers who taught twelfth and eleventh grade students were also included into the regression equation.
Resumo:
Math anxiety levels and performance outcomes were compared for bilingual and monolingual community college Intermediate Algebra students attending a culturally diverse urban commuter college. Participants (N = 618, 250 men, 368 women; 361 monolingual, 257 bilingual) completed the Abbreviated Math Anxiety Scale (AMAS) and a demographics instrument. Bilingual and monolingual students reported comparable mean AMAS scores (20.6 and 20.7, respectively) and comparable proportions of math anxious individuals (50% and 48%, respectively). Factor analysis of AMAS scores, using principal component analysis by varimax rotation, yielded similar two-factor structures for both populations -- assessment and learning content -- accounting for 65.6% of the trace for bilingual AMAS scores. Statistically significant predictor variables for levels of math anxiety for the bilingual participants included (a) preparatory course enrollment (β = .236, p = .041) with those enrolled in prior preparatory courses scoring higher, (b) education major (β = .285, p = .018) with education majors scoring higher, and (c) business major (β = .252, p = .032) with business majors scoring higher. One statistically significant predictor variable emerged for monolingual students, gender (β = -.085, p = .001) with females ranking higher. Age, income, race, ethnicity, U.S. origin, science or health science majors did not emerge as statistically significant predictor variables for either group.^ Similarities between monolingual and bilingual participants included statistically significant negative linear correlations between AMAS scores and course grades for both bilingual (r = -.178, p = .017) and monolingual participants (r = -.203, p = .001). Differences included a statistically significant linear correlation between AMAS scores and final exam grades for monolingual participants only (r = -.253, p < .0009) despite no statistically significant difference in the strength the linear relationship of the AMAS scores and the final exam scores between groups, z = 1.35, p = .1756.^ The findings show that bilingual and monolingual students report math anxiety similarly and that math anxiety has similar associations with performance measures, despite differences between predictor variables. One of the first studies on the math anxiety of bilingual community college students, the results suggest recommendations for researchers and practitioners.^
Resumo:
Math anxiety levels and performance outcomes were compared for bilingual and monolingual community college Intermediate Algebra students attending a culturally diverse urban commuter college. Participants (N = 618, 250 men, 368 women; 361 monolingual, 257 bilingual) completed the Abbreviated Math Anxiety Scale (AMAS) and a demographics instrument. Bilingual and monolingual students reported comparable mean AMAS scores (20.6 and 20.7, respectively) and comparable proportions of math anxious individuals (50% and 48%, respectively). Factor analysis of AMAS scores, using principal component analysis by varimax rotation, yielded similar two-factor structures for both populations -- assessment and learning content -- accounting for 65.6% of the trace for bilingual AMAS scores. Statistically significant predictor variables for levels of math anxiety for the bilingual participants included (a) preparatory course enrollment (β = .236, p = .041) with those enrolled in prior preparatory courses scoring higher, (b) education major (β = .285, p = .018) with education majors scoring higher, and (c) business major (β = .252, p = .032) with business majors scoring higher. One statistically significant predictor variable emerged for monolingual students, gender (β = -.085, p = .001) with females ranking higher. Age, income, race, ethnicity, U.S. origin, science or health science majors did not emerge as statistically significant predictor variables for either group. Similarities between monolingual and bilingual participants included statistically significant negative linear correlations between AMAS scores and course grades for both bilingual (r = -.178, p = .017) and monolingual participants (r = -.203, p = .001). Differences included a statistically significant linear correlation between AMAS scores and final exam grades for monolingual participants only (r = -.253, p < .0009) despite no statistically significant difference in the strength the linear relationship of the AMAS scores and the final exam scores between groups, z = 1.35, p = .1756. The findings show that bilingual and monolingual students report math anxiety similarly and that math anxiety has similar associations with performance measures, despite differences between predictor variables. One of the first studies on the math anxiety of bilingual community college students, the results suggest recommendations for researchers and practitioners.
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.
Resumo:
Undergraduate research programs have been used as a tool to attract and retain student interest in science careers. This study evaluates the short and long-term benefits of a Summer Science Internship (SSI) at the University of Texas Health Science Center at Houston– School of Public Health – in Brownsville, Texas, by analyzing survey data from alumni. Questions assessing short-term program impact were aimed at three main topics, student: satisfaction with program, self-efficacy for science after completing the program, and perceived benefits. Long-term program impact was assessed by looking at student school attendance and college majors along with perceived links between SSI and future college plans. Students reported high program satisfaction, a significant increase in science self-efficacy and high perceived benefits. At the time data were collected for the study, one-hundred percent of alumni were enrolled in school (high school or college). The majority of students indicated they were interested in completing a science major/career, heavily influenced by their participation in the program.^
Resumo:
To report on the use of chronic myeloid leukemia as a theme of basic clinical integration for first year medical students to motivate and enable in-depth understanding of the basic sciences of the future physician. During the past thirteen years we have reviewed and updated the curriculum of the medical school of the Universidade Estadual de Campinas. The main objective of the new curriculum is to teach the students how to learn to learn. Since then, a case of chronic myeloid leukemia has been introduced to first year medical students and discussed in horizontal integration with all themes taught during a molecular and cell biology course. Cell structure and components, protein, chromosomes, gene organization, proliferation, cell cycle, apoptosis, signaling and so on are all themes approached during this course. At the end of every topic approached, the students prepare in advance the corresponding topic of clinical cases chosen randomly during the class, which are then presented by them. During the final class, a paper regarding mutations in the abl gene that cause resistance to tyrosine kinase inhibitors is discussed. After each class, three tests are solved in an interactive evaluation. The course has been successful since its beginning, 13 years ago. Great motivation of those who participated in the course was observed. There were less than 20% absences in the classes. At least three (and as many as nine) students every year were interested in starting research training in the field of hematology. At the end of each class, an interactive evaluation was performed and more than 70% of the answers were correct in each evaluation. Moreover, for the final evaluation, the students summarized, in a written report, the molecular and therapeutic basis of chronic myeloid leukemia, with scores ranging from 0 to 10. Considering all 13 years, a median of 78% of the class scored above 5 (min 74%-max 85%), and a median of 67% scored above 7. Chronic myeloid leukemia is an excellent example of a disease that can be used for clinical basic integration as this disorder involves well known protein, cytogenetic and cell function abnormalities, has well-defined diagnostic strategies and a target oriented therapy.
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
Science is a fundamental human activity and we trust its results because it has several error-correcting mechanisms. It is subject to experimental tests that are replicated by independent parts. Given the huge amount of information available and the information asymetry between producers and users of knowledge, scientists have to rely on the reports of others. This makes it possible for social effects to influence the scientific community. Here, an Opinion Dynamics agent model is proposed to describe this situation. The influence of Nature through experiments is described as an external field that acts on the experimental agents. We will see that the retirement of old scientists can be fundamental in the acceptance of a new theory. We will also investigate the interplay between social influence and observations. This will allow us to gain insight in the problem of when social effects can have negligible effects in the conclusions of a scientific community and when we should worry about them.
Resumo:
Science education is under revision. Recent changes in society require changes in education to respond to new demands. Scientific literacy can be considered a new goal of science education and the epistemological gap between natural sciences and literacy disciplines must be overcome. The history of science is a possible bridge to link these `two cultures` and to foster an interdisciplinary approach in the classroom. This paper acknowledges Darwin`s legacy and proposes the use of cartoons and narrative expositions to put this interesting chapter of science into its historical context. A five-lesson didactic sequence was developed to tell part of the story of Darwin`s expedition through South America for students from 10 to 12 years of age. Beyond geological and biological perspectives, the inclusion of historical, social and geographical facts demonstrated the beauty and complexity of the findings that Darwin employed to propose the theory of evolution.