14 resultados para Schwörer, IgnazSchwörer, IgnazIgnazSchwörer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake sediments from Lauenensee (1381 m a.s.l.), a small lake in the Bernese Alps, were analysed to reconstruct the vegetation and fire history. The chronology is based on 11 calibrated radiocarbon dates on terrestrial plant macrofossils suggesting a basal age of 14,200 cal. BP. Pollen and macrofossil data imply that treeline never reached the lake catchment during the Bølling–Allerød interstadial. Treeline north of the Alps was depressed by c. 300 altitudinal meters, if compared with southern locations. We attribute this difference to colder temperatures and to unbuffered cold air excursions from the ice masses in northern Europe. Afforestation started after the Younger Dryas at 11,600 cal. BP. Early-Holocene tree-Betula and Pinus sylvestris forests were replaced by Abies alba forests around 7500 cal. BP. Continuous high-resolution pollen and macrofossil series allow quantitative assessments of vegetation dynamics at 5900–5200 cal. BP (first expansion of Picea abies, decline of Abies alba) and 4100–2900 cal. BP (first collapse of Abies alba). The first signs of human activity became noticeable during the late Neolithic c. 5700–5200 cal. BP. Cross-correlation analysis shows that the expansion of Alnus viridis and the replacement of Abies alba by Picea abies after c. 5500 cal. BP was most likely a consequence of human disturbance. Abies alba responded very sensitively to a combination of fire and grazing disturbance. Our results imply that the current dominance of Picea abies in the upper montane and subalpine belts is a consequence of anthropogenic activities through the millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anhand fossiler Überreste von Chironomiden (Zuckmücken) in den Sedimenten des Lauenensees wurden Temperaturveränderungen im westlichen Berner Oberland über die letzten 14 000 Jahre rekonstruiert. Mittlere Juli-Lufttemperaturen wurden mithilfe eines Kalibrationsdatensatzes und eines Temperaturrekonstruktionsmodells rekonstruiert, welches bereits in einer früheren Studie entwickelt worden ist. Während dem Allerød (~14,000-12,700 kal. Jahre vor heute) wurden Temperaturen zwischen 8,7-12,0 °C berechnet, während der Jüngeren Dryaszeit (-12 700- 11 700 kal. Jahre vor heute) Werte um 10,2-10,7 °C und während dem Früh- bis Mittelholozän (-11 700-3000 kal. Jahre vor heute) Temperaturen um 12,0-14,5 °C. Für das Spätholozän (ab -3000 kal. Jahre vor heute) wurden tiefere Temperaturen (10-12 °C) geschätzt. Der menschliche Einfluss wird ab 4300 kal. Jahre vor heute deutlich in den Chironomidenvergesellschaftungen sichtbar und beeinträchtigt möglicherweise die Verlässlichkeit der Temperaturrekonstruktion für dieses Zeitintervall. Die Temperaturrekonstruktion stimmt gut mit anderen paläoklimatischen Rekonstruktionen der Alpen sowie dem Anstieg der Baumgrenze in dieser Region überein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimente des Lauenensees (Berner Oberland, 7381 m ü.M.) wurden untersucht, um mittels Pollen-, Pflanzenrest-und Holzkohleanalyse die regionale Vegetations-und Feuergeschichte zu rekonstruieren. Die Chronologie basiert auf elf kalibrierten Radiokarbondaten von terrestrischen Pflanzenresten und ergab ein Basisalter von 14 200 kal. Jahren vor heute (12 250 v. Chr.). Während des Bölling-Allerød lnterstadials war das Einzugsgebiet des Lauenensees noch nicht bewaldet. Somit lag die Waldgrenze in den Nordalpen tiefer als in den Zentral-und Südalpen. Die Wieder-bewaldung startete nach der Jüngeren Dryas vor 11 600 kal. Jahren (9650 v. Chr.). Diese frühen Birken-und Föhrenwälder (Betula und Pinus sylvestris) wurden vor rund 7500 kal. Jahren (5550 v. Chr.) durch Weisstannenwälder(Abies alba) ersetzt. Der erste menschliche Einfluss ist ab dem späten Neolithikum belegt (5700 bis 5200 kal. Jahre vor heute, 3750-3250 v. Chr.). Mit zwei hochaufgelösten Sequenzen wurde die Ausbreitung der Fichte (Picea abies) im Neolithikum (5700 bis 5200 kal. Jahre vor heute, 3750-3250 v. Chr.) und der Kollaps der Weisstanne in der Bronzezeit (4100 bis 2900 kal. Jahre vor heute, 2150-950 v. Chr.) untersucht. Die Resultate der Kreuzkorrelationen zeigen, dass die Ausbreitung der Grünerle (Ainus viridis) sowie der Wechsel von Weisstannen-zu Fichtenwäldern durch den Menschen ausgelöst wurde. Die Weisstanne reagiert nachweislich sehr sensibel auf Beweidung und Feuer, weshalb sich die heutige Fichtendominanz im oberen montanen und subalpinen Vegetationsgürtel aus der menschlichen Nutzung über die Jahrtausende ergeben haben muss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11700years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid-inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim, a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid-inferred July-temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model-data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500m and treeline positions of ca. 2500m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low-impact pastoralism to preserve species-rich alpine meadows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2003 a melting ice field on the Schnidejoch pass (2756 a.s.l) delivered several hundred objects from the Neolithic, the Bronze and Iron Age as well as from Roman and Early Medieval times. The oldest finds date to the beginning 5th millennium BC, the youngest ones date around 1000 AD. Most of the objects stem from the Neolithic and the Bronze Age and are of organic origin. A series of more than 70 radiocarbon dates confirms that the Schnidejoch pass, linking the Bernese Highlands with the River Rhone valley, was in use at least from 4800–4500 BC on. The accessibility of the pass was easy when the glaciers descending from the nearby Wildhorn mountain range (peak on 3248 a.s.l) were in a retreating phase. In contrary glacier advances closed the way to the pass. In 2010 a palaeoecological study of sediment cores researched nearby Lake Iffig (2065 m a.s.l.). The results show clear indications of early human impact in this alpine area. Linking archaeological finds from Schnidejoch pass and River Rhone valley with the palaeoecological data can be interpreted as early indications of alpine pastoralism and transhumance. The combined archaeological and paleoecolical research allows to explain vertical mobility in the Swiss Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A deeper understanding of past vegetation dynamics is required to better assess future vegetation responses to global warming in the Alps. Lake sediments from Lac de Bretaye, a small subalpine lake in the Northern Swiss Alps (1780 m a.s.l.), were analysed to reconstruct past vegetation dynamics for the entire Holocene, using pollen, macrofossil and charcoal analyses as main proxies. The results show that timberline reached the lake’s catchment area at around 10,300 cal. BP, supporting the hypothesis of a delayed postglacial afforestation in the Northern Alps. At the same time, thermophilous trees such as Ulmus, Tilia and Acer established in the lowlands and expanded to the altitude of the lake, forming distinctive boreo-nemoral forests with Betula, Pinus cembra and Larix decidua. From about 5000 to 3500 cal. BP, thermophilous trees declined because of increasing human land use, mainly driven by the mass expansion of Picea abies and severe anthropogenic fire activity. From the Bronze Age onwards (c. 4200–2800 cal. BP), grazing indicators and high values for charcoal concentration and influx attest an intensifying human impact, fostering the expansion of Alnus viridis and Picea abies. Hence, biodiversity in alpine meadows increased, whereas forest diversity declined, as can be seen in other regional records. We argue that the anticipated climate change and decreasing human impact in the Alps today will not only lead to an upward movement of timberline with consequent loss of area for grasslands, but also to a disruption of Picea abies forests, which may allow the re-expansion of thermophilous tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.