985 resultados para Scheduling simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational grids allow users to share resources of distributed machines, even if those machines belong to different corporations. The scheduling of applications must be performed aiming at performance goals, and focusing on choose which processes can have access to specif resources, and which resources. In this article we discuss aspects of scheduling of application in grid computing environment. We also present a tool for scheduling simulation along with test scenarios and results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pipeline transport represents one of the most important means of moving oil derivatives to different locations. It is both a reliable and inexpensive means of transport, and it yields small variable costs along with a great degree of reliability. Pipeline scheduling is not a trivial task; it involves considerable time from schedulers. Discussed here is a real-application case of a tool that helps schedulers simulate pipeline performance as a means of creating a feasible schedule for a particular time span.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the implementation of an LTE downlink simulator that is able to precisely model the fast time and frequency variations existing in a multipath channel. This is decisive to properly simulate the gains achievable by the channeldependent scheduling LTE is capable of. The aim of this study is to investigate the relationship between the throughput achieved by a base station and parameters of active users in the cell (such as SINR or speed). The ultimate goal is to obtain a model that can predict throughput as a function of a few selected parameters that characterize users’ conditions. A proportional fair scheduler is used because of its ability to maximize the BS throughput while preventing user starvation. Some conclusions are drawn on the main parameters affecting the BS throughput based on results obtained so far.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"UILU Eng 79 1709."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.