46 resultados para Schedulers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.

In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equation is presented for calculating the fairness of dynamically adaptive packet schedulers such as dynamic weighted fair queuing (DWFQ). The fairness of static packet schedulers such as weighted fair queue (WFQ) can be found using the widely accepted Worst-case Fair Index. The fairness of DWFQ can be measured using an Adapted Worst-case Fairness Index (AWFI). The AWFI enables a direct comparison of fairness properties of the DWFQ or other dynamically adaptive schedulers with static/non-adaptive schedulers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new generation of multicore processors opens new perspectives for the design of embedded systems. Multiprocessing, however, poses new challenges to the scheduling of real-time applications, in which the ever-increasing computational demands are constantly flanked by the need of meeting critical time constraints. Many research works have contributed to this field introducing new advanced scheduling algorithms. However, despite many of these works have solidly demonstrated their effectiveness, the actual support for multiprocessor real-time scheduling offered by current operating systems is still very limited. This dissertation deals with implementative aspects of real-time schedulers in modern embedded multiprocessor systems. The first contribution is represented by an open-source scheduling framework, which is capable of realizing complex multiprocessor scheduling policies, such as G-EDF, on conventional operating systems exploiting only their native scheduler from user-space. A set of experimental evaluations compare the proposed solution to other research projects that pursue the same goals by means of kernel modifications, highlighting comparable scheduling performances. The principles that underpin the operation of the framework, originally designed for symmetric multiprocessors, have been further extended first to asymmetric ones, which are subjected to major restrictions such as the lack of support for task migrations, and later to re-programmable hardware architectures (FPGAs). In the latter case, this work introduces a scheduling accelerator, which offloads most of the scheduling operations to the hardware and exhibits extremely low scheduling jitter. The realization of a portable scheduling framework presented many interesting software challenges. One of these has been represented by timekeeping. In this regard, a further contribution is represented by a novel data structure, called addressable binary heap (ABH). Such ABH, which is conceptually a pointer-based implementation of a binary heap, shows very interesting average and worst-case performances when addressing the problem of tick-less timekeeping of high-resolution timers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is desirable that energy performance improvement is not realized at the expense of other network performance parameters. This paper investigates the trade off between energy efficiency, spectral efficiency and user QoS performance for a multi-cell multi-user radio access network. Specifically, the energy consumption ratio (ECR) and the spectral efficiency of several common frequency domain packet schedulers in a cellular E-UTRAN downlink are compared for both the SISO transmission mode and the 2x2 Alamouti Space Frequency Block Code (SFBC) MIMO transmission mode. It is well known that the 2x2 SFBC MIMO transmission mode is more spectrally efficient compared to the SISO transmission mode, however, the relationship between energy efficiency and spectral efficiency is undecided. It is shown that, for the E-UTRAN downlink with fixed transmission power, spectral efficiency improvement results into energy efficiency improvement. The effect of SFBC MIMO versus SISO on the user QoS performance is also studied. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a parallel implementation of an agent-based model applied to electricity distribution grids. A fine-grained shared memory parallel implementation is presented, detailing the way the agents are grouped and executed on a multi-threaded machine, as well as the way the model is built (in a composable manner) which is an aid to the parallelisation. Current results show a medium level speedup of 2.6, but improvements are expected by incor-porating newer distributed or parallel ABM schedulers into this implementa-tion. While domain-specific, this parallel algorithm can be applied to similarly structured ABMs (directed acyclic graphs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sugarcane transport system plays a critical role in the overall performance of Australia’s sugarcane industry. An inefficient sugarcane transport system interrupts the raw sugarcane harvesting process, delays the delivery of sugarcane to the mill, deteriorates the sugar quality, increases the usage of empty bins, and leads to the additional sugarcane production costs. Due to these negative effects, there is an urgent need for an efficient sugarcane transport schedule that should be developed by the rail schedulers. In this study, a multi-objective model using mixed integer programming (MIP) is developed to produce an industry-oriented scheduling optimiser for sugarcane rail transport system. The exact MIP solver (IBM ILOG-CPLEX) is applied to minimise the makespan and the total operating time as multi-objective functions. Moreover, the so-called Siding neighbourhood search (SNS) algorithm is developed and integrated with Sidings Satisfaction Priorities (SSP) and Rail Conflict Elimination (RCE) algorithms to solve the problem in a more efficient way. In implementation, the sugarcane transport system of Kalamia Sugar Mill that is a coastal locality about 1050 km northwest of Brisbane city is investigated as a real case study. Computational experiments indicate that high-quality solutions are obtainable in industry-scale applications.