910 resultados para Schaderreger, Schaderregerprognose, Prognosemodelle, GIS, Interpolation
Resumo:
In der hier vorliegenden Arbeit wurde am Beispiel der Kraut- und Knollenfäule an Kartoffeln Phytophthora infestans und des Kartoffelkäfers Leptinotarsa decemlineata untersucht, ob durch den Einsatz von Geographischen Informationssystemen (GIS) landwirtschaftliche Schader¬reger¬prognosen für jeden beliebigen Kartoffelschlag in Deutschland erstellt werden können. Um dieses Ziel zu erreichen, wurden die Eingangsparameter (Temperatur und relative Luftfeuchte) der Prognosemodelle für die beiden Schaderreger (SIMLEP1, SIMPHYT1, SIMPHYT3 and SIMBLIGHT1) so aufbereitet, dass Wetterdaten flächendeckend für Deutschland zur Verfügung standen. Bevor jedoch interpoliert werden konnte, wurde eine Regionalisierung von Deutschland in Interpolationszonen durchgeführt und somit Naturräume geschaffen, die einen Vergleich und eine Bewertung der in ihnen liegenden Wetterstationen zulassen. Hierzu wurden die Boden-Klima-Regionen von SCHULZKE und KAULE (2000) modifiziert, an das Wetterstationsnetz angepasst und mit 5 bis 10 km breiten Pufferzonen an der Grenze der Interpolationszonen versehen, um die Wetterstationen so häufig wie möglich verwenden zu können. Für die Interpolation der Wetterdaten wurde das Verfahren der multiplen Regression gewählt, weil dieses im Vergleich zu anderen Verfahren die geringsten Abweichungen zwischen interpolierten und gemessenen Daten aufwies und den technischen Anforderungen am besten entsprach. Für 99 % aller Werte konnten bei der Temperaturberechnung Abweichungen in einem Bereich zwischen -2,5 und 2,5 °C erzielt werden. Bei der Berechnung der relativen Luftfeuchte wurden Abweichungen zwischen -12 und 10 % relativer Luftfeuchte erreicht. Die Mittelwerte der Abweichungen lagen bei der Temperatur bei 0,1 °C und bei der relativen Luftfeuchte bei -1,8 %. Zur Überprüfung der Trefferquoten der Modelle beim Betrieb mit interpolierten Wetterdaten wurden Felderhebungsdaten aus den Jahren 2000 bis 2007 zum Erstauftreten der Kraut- und Knollenfäule sowie des Kartoffelkäfers verwendet. Dabei konnten mit interpolierten Wetterdaten die gleichen und auch höhere Trefferquoten erreicht werden, als mit der bisherigen Berechnungsmethode. Beispielsweise erzielte die Berechnung des Erstauftretens von P. infestans durch das Modell SIMBLIGHT1 mit interpolierten Wetterdaten im Schnitt drei Tage geringere Abweichungen im Vergleich zu den Berechnungen ohne GIS. Um die Auswirkungen interpretieren zu können, die durch Abweichungen der Temperatur und der relativen Luftfeuchte entstanden wurde zusätzlich eine Sensitivitätsanalyse zur Temperatur und relativen Luftfeuchte der verwendeten Prognosemodelle durchgeführt. Die Temperatur hatte bei allen Modellen nur einen geringen Einfluss auf das Prognoseergebnis. Veränderungen der relativen Luftfeuchte haben sich dagegen deutlich stärker ausgewirkt. So lag bei SIMBLIGHT1 die Abweichung durch eine stündliche Veränderung der relativen Luftfeuchte (± 6 %) bei maximal 27 Tagen, wogegen stündliche Veränderungen der Temperatur (± 2 °C) eine Abweichung von maximal 10 Tagen ausmachten. Die Ergebnisse dieser Arbeit zeigen, dass durch die Verwendung von GIS mindestens die gleichen und auch höhere Trefferquoten bei Schaderregerprognosen erzielt werden als mit der bisherigen Verwendung von Daten einer nahegelegenen Wetterstation. Die Ergebnisse stellen einen wesentlichen Fortschritt für die landwirtschaftlichen Schaderregerprognosen dar. Erstmals ist es möglich, bundesweite Prognosen für jeden beliebigen Kartoffelschlag zur Bekämpfung von Schädlingen in der Landwirtschaft bereit zu stellen.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.
Resumo:
La tecnología LiDAR (Light Detection and Ranging), basada en el escaneado del territorio por un telémetro láser aerotransportado, permite la construcción de Modelos Digitales de Superficie (DSM) mediante una simple interpolación, así como de Modelos Digitales del Terreno (DTM) mediante la identificación y eliminación de los objetos existentes en el terreno (edificios, puentes o árboles). El Laboratorio de Geomática del Politécnico de Milán – Campus de Como- desarrolló un algoritmo de filtrado de datos LiDAR basado en la interpolación con splines bilineares y bicúbicas con una regularización de Tychonov en una aproximación de mínimos cuadrados. Sin embargo, en muchos casos son todavía necesarios modelos más refinados y complejos en los cuales se hace obligatorio la diferenciación entre edificios y vegetación. Este puede ser el caso de algunos modelos de prevención de riesgos hidrológicos, donde la vegetación no es necesaria; o la modelización tridimensional de centros urbanos, donde la vegetación es factor problemático. (...)
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation
Resumo:
A methodology for analyzing the solar access and its influence on both air temperature and thermal comfort of the urban environment was here developed by applying the potentiality of GIS tools. Urban canyons in a specific area of a Brazilian medium sized city were studied. First, a computational algorithm was applied in order to allow the determination of sky view factors (SVF) and sun-paths in urban canyons. Then, air temperatures in 40 measurement points were collected within the study area. Solar radiation values of these canyons were determined and subsequently stored in a GIS database. The creation of thermal maps for the whole neighbourhood was possible due to a statistical treatment of the data, by promoting the interpolation of values. All data could then be spatially cross-examined. In addition, thermal comfort maps for summer and winter periods were generated. The methodology allowed the identification of thermal tendencies within the neighbourhood, what can be useful in the conception of guidelines for urban planning purposes.
Resumo:
La investigación de esta tesis se centra en el estudio de técnicas geoestadísticas y su contribución a una mayor caracterización del binomio factores climáticos-rendimiento de un cultivo agrícola. El inexorable vínculo entre la variabilidad climática y la producción agrícola cobra especial relevancia en estudios sobre el cambio climático o en la modelización de cultivos para dar respuesta a escenarios futuros de producción mundial. Es información especialmente valiosa en sistemas operacionales de monitoreo y predicción de rendimientos de cultivos Los cuales son actualmente uno de los pilares operacionales en los que se sustenta la agricultura y seguridad alimentaria mundial; ya que su objetivo final es el de proporcionar información imparcial y fiable para la regularización de mercados. Es en este contexto, donde se quiso dar un enfoque alternativo a estudios, que con distintos planteamientos, analizan la relación inter-anual clima vs producción. Así, se sustituyó la dimensión tiempo por la espacio, re-orientando el análisis estadístico de correlación interanual entre rendimiento y factores climáticos, por el estudio de la correlación inter-regional entre ambas variables. Se utilizó para ello una técnica estadística relativamente nueva y no muy aplicada en investigaciones similares, llamada regresión ponderada geográficamente (GWR, siglas en inglés de “Geographically weighted regression”). Se obtuvieron superficies continuas de las variables climáticas acumuladas en determinados periodos fenológicos, que fueron seleccionados por ser factores clave en el desarrollo vegetativo de un cultivo. Por ello, la primera parte de la tesis, consistió en un análisis exploratorio sobre comparación de Métodos de Interpolación Espacial (MIE). Partiendo de la hipótesis de que existe la variabilidad espacial de la relación entre factores climáticos y rendimiento, el objetivo principal de esta tesis, fue el de establecer en qué medida los MIE y otros métodos geoestadísticos de regresión local, pueden ayudar por un lado, a alcanzar un mayor entendimiento del binomio clima-rendimiento del trigo blando (Triticum aestivum L.) al incorporar en dicha relación el componente espacial; y por otro, a caracterizar la variación de los principales factores climáticos limitantes en el crecimiento del trigo blando, acumulados éstos en cuatro periodos fenológicos. Para lleva a cabo esto, una gran carga operacional en la investigación de la tesis consistió en homogeneizar y hacer los datos fenológicos, climáticos y estadísticas agrícolas comparables tanto a escala espacial como a escala temporal. Para España y los Bálticos se recolectaron y calcularon datos diarios de precipitación, temperatura máxima y mínima, evapotranspiración y radiación solar en las estaciones meteorológicas disponibles. Se dispuso de una serie temporal que coincidía con los mismos años recolectados en las estadísticas agrícolas, es decir, 14 años contados desde 2000 a 2013 (hasta 2011 en los Bálticos). Se superpuso la malla de información fenológica de cuadrícula 25 km con la ubicación de las estaciones meteorológicas con el fin de conocer los valores fenológicos en cada una de las estaciones disponibles. Hecho esto, para cada año de la serie temporal disponible se calcularon los valores climáticos diarios acumulados en cada uno de los cuatro periodos fenológicos seleccionados P1 (ciclo completo), P2 (emergencia-madurez), P3 (floración) y P4 (floraciónmadurez). Se calculó la superficie interpolada por el conjunto de métodos seleccionados en la comparación: técnicas deterministas convencionales, kriging ordinario y cokriging ordinario ponderado por la altitud. Seleccionados los métodos más eficaces, se calculó a nivel de provincias las variables climatológicas interpoladas. Y se realizaron las regresiones locales GWR para cuantificar, explorar y modelar las relaciones espaciales entre el rendimiento del trigo y las variables climáticas acumuladas en los cuatro periodos fenológicos. Al comparar la eficiencia de los MIE no destaca una técnica por encima del resto como la que proporcione el menor error en su predicción. Ahora bien, considerando los tres indicadores de calidad de los MIE estudiados se han identificado los métodos más efectivos. En el caso de la precipitación, es la técnica geoestadística cokriging la más idónea en la mayoría de los casos. De manera unánime, la interpolación determinista en función radial (spline regularizado) fue la técnica que mejor describía la superficie de precipitación acumulada en los cuatro periodos fenológicos. Los resultados son más heterogéneos para la evapotranspiración y radiación. Los métodos idóneos para estas se reparten entre el Inverse Distance Weighting (IDW), IDW ponderado por la altitud y el Ordinary Kriging (OK). También, se identificó que para la mayoría de los casos en que el error del Ordinary CoKriging (COK) era mayor que el del OK su eficacia es comparable a la del OK en términos de error y el requerimiento computacional de este último es mucho menor. Se pudo confirmar que existe la variabilidad espacial inter-regional entre factores climáticos y el rendimiento del trigo blando tanto en España como en los Bálticos. La herramienta estadística GWR fue capaz de reproducir esta variabilidad con un rendimiento lo suficientemente significativo como para considerarla una herramienta válida en futuros estudios. No obstante, se identificaron ciertas limitaciones en la misma respecto a la información que devuelve el programa a nivel local y que no permite desgranar todo el detalle sobre la ejecución del mismo. Los indicadores y periodos fenológicos que mejor pudieron reproducir la variabilidad espacial del rendimiento en España y Bálticos, arrojaron aún, una mayor credibilidad a los resultados obtenidos y a la eficacia del GWR, ya que estaban en línea con el conocimiento agronómico sobre el cultivo del trigo blando en sistemas agrícolas mediterráneos y norteuropeos. Así, en España, el indicador más robusto fue el balance climático hídrico Climatic Water Balance) acumulado éste, durante el periodo de crecimiento (entre la emergencia y madurez). Aunque se identificó la etapa clave de la floración como el periodo en el que las variables climáticas acumuladas proporcionaban un mayor poder explicativo del modelo GWR. Sin embargo, en los Bálticos, países donde el principal factor limitante en su agricultura es el bajo número de días de crecimiento efectivo, el indicador más efectivo fue la radiación acumulada a lo largo de todo el ciclo de crecimiento (entre la emergencia y madurez). Para el trigo en regadío no existe ninguna combinación que pueda explicar más allá del 30% de la variación del rendimiento en España. Poder demostrar que existe un comportamiento heterogéneo en la relación inter-regional entre el rendimiento y principales variables climáticas, podría contribuir a uno de los mayores desafíos a los que se enfrentan, a día de hoy, los sistemas operacionales de monitoreo y predicción de rendimientos de cultivos, y éste es el de poder reducir la escala espacial de predicción, de un nivel nacional a otro regional. ABSTRACT This thesis explores geostatistical techniques and their contribution to a better characterization of the relationship between climate factors and agricultural crop yields. The crucial link between climate variability and crop production plays a key role in climate change research as well as in crops modelling towards the future global production scenarios. This information is particularly important for monitoring and forecasting operational crop systems. These geostatistical techniques are currently one of the most fundamental operational systems on which global agriculture and food security rely on; with the final aim of providing neutral and reliable information for food market controls, thus avoiding financial speculation of nourishments of primary necessity. Within this context the present thesis aims to provide an alternative approach to the existing body of research examining the relationship between inter-annual climate and production. Therefore, the temporal dimension was replaced for the spatial dimension, re-orienting the statistical analysis of the inter-annual relationship between crops yields and climate factors to an inter-regional correlation between these two variables. Geographically weighted regression, which is a relatively new statistical technique and which has rarely been used in previous research on this topic was used in the current study. Continuous surface values of the climate accumulated variables in specific phenological periods were obtained. These specific periods were selected because they are key factors in the development of vegetative crop. Therefore, the first part of this thesis presents an exploratory analysis regarding the comparability of spatial interpolation methods (SIM) among diverse SIMs and alternative geostatistical methodologies. Given the premise that spatial variability of the relationship between climate factors and crop production exists, the primary aim of this thesis was to examine the extent to which the SIM and other geostatistical methods of local regression (which are integrated tools of the GIS software) are useful in relating crop production and climate variables. The usefulness of these methods was examined in two ways; on one hand the way this information could help to achieve higher production of the white wheat binomial (Triticum aestivum L.) by incorporating the spatial component in the examination of the above-mentioned relationship. On the other hand, the way it helps with the characterization of the key limiting climate factors of soft wheat growth which were analysed in four phenological periods. To achieve this aim, an important operational workload of this thesis consisted in the homogenization and obtention of comparable phenological and climate data, as well as agricultural statistics, which made heavy operational demands. For Spain and the Baltic countries, data on precipitation, maximum and minimum temperature, evapotranspiration and solar radiation from the available meteorological stations were gathered and calculated. A temporal serial approach was taken. These temporal series aligned with the years that agriculture statistics had previously gathered, these being 14 years from 2000 to 2013 (until 2011 for the Baltic countries). This temporal series was mapped with a phenological 25 km grid that had the location of the meteorological stations with the objective of obtaining the phenological values in each of the available stations. Following this procedure, the daily accumulated climate values for each of the four selected phenological periods were calculated; namely P1 (complete cycle), P2 (emergency-maturity), P3 (flowering) and P4 (flowering- maturity). The interpolated surface was then calculated using the set of selected methodologies for the comparison: deterministic conventional techniques, ordinary kriging and ordinary cokriging weighted by height. Once the most effective methods had been selected, the level of the interpolated climate variables was calculated. Local GWR regressions were calculated to quantify, examine and model the spatial relationships between soft wheat production and the accumulated variables in each of the four selected phenological periods. Results from the comparison among the SIMs revealed that no particular technique seems more favourable in terms of accuracy of prediction. However, when the three quality indicators of the compared SIMs are considered, some methodologies appeared to be more efficient than others. Regarding precipitation results, cokriging was the most accurate geostatistical technique for the majority of the cases. Deterministic interpolation in its radial function (controlled spline) was the most accurate technique for describing the accumulated precipitation surface in all phenological periods. However, results are more heterogeneous for the evapotranspiration and radiation methodologies. The most appropriate technique for these forecasts are the Inverse Distance Weighting (IDW), weighted IDW by height and the Ordinary Kriging (OK). Furthermore, it was found that for the majority of the cases where the Ordinary CoKriging (COK) error was larger than that of the OK, its efficacy was comparable to that of the OK in terms of error while the computational demands of the latter was much lower. The existing spatial inter-regional variability between climate factors and soft wheat production was confirmed for both Spain and the Baltic countries. The GWR statistic tool reproduced this variability with an outcome significative enough as to be considered a valid tool for future studies. Nevertheless, this tool also had some limitations with regards to the information delivered by the programme because it did not allow for a detailed break-down of its procedure. The indicators and phenological periods that best reproduced the spatial variability of yields in Spain and the Baltic countries made the results and the efficiency of the GWR statistical tool even more reliable, despite the fact that these were already aligned with the agricultural knowledge about soft wheat crop under mediterranean and northeuropean agricultural systems. Thus, for Spain, the most robust indicator was the Climatic Water Balance outcome accumulated throughout the growing period (between emergency and maturity). Although the flowering period was the phase that best explained the accumulated climate variables in the GWR model. For the Baltic countries where the main limiting agricultural factor is the number of days of effective growth, the most effective indicator was the accumulated radiation throughout the entire growing cycle (between emergency and maturity). For the irrigated soft wheat there was no combination capable of explaining above the 30% of variation of the production in Spain. The fact that the pattern of the inter-regional relationship between the crop production and key climate variables is heterogeneous within a country could contribute to one is one of the greatest challenges that the monitoring and forecasting operational systems for crop production face nowadays. The present findings suggest that the solution may lay in downscaling the spatial target scale from a national to a regional level.
Resumo:
The study of Quality of Life (Qol) has been conducted on various scales throughout the years with focus on assessing overall quality of living amongst citizens. The main focus in these studies have been on economic factors, with the purpose of creating a Quality of Life Index (QLI).When it comes down to narrowing the focus to the environment and factors like Urban Green Spaces (UGS) and air quality the topic gets more focused on pointing out how each alternative meets this certain criteria. With the benefits of UGS and a healthy environment in focus a new Environmental Quality of Life Index (EQLI) will be proposed by incorporating Multi Criteria Analysis (MCA) and Geographical Information Systems (GIS). Working with MCA on complex environmental problems and incorporating it with GIS is a challenging but rewarding task, and has proven to be an efficient approach among environmental scientists. Background information on three MCA methods will be shown: Analytical Hierarchy Process (AHP), Regime Analysis and PROMETHEE. A survey based on a previous study conducted on the status of UGS within European cities was sent to 18 municipalities in the study area. The survey consists of evaluating the current status of UGS as well as planning and management of UGS with in municipalities for the purpose of getting criteria material for the selected MCA method. The current situation of UGS is assessed with use of GIS software and change detection is done on a 10 year period using NDVI index for comparison purposes to one of the criteria in the MCA. To add to the criteria, interpolation of nitrogen dioxide levels was performed with ordinary kriging and the results transformed into indicator values. The final outcome is an EQLI map with indicators of environmentally attractive municipalities with ranking based on predefinedMCA criteria using PROMETHEE I pairwise comparison and PROMETHEE II complete ranking of alternatives. The proposed methodology is applied to Lisbon’s Metropolitan Area, Portugal.
Resumo:
Maps have been published on the world wide web since its inception (Cartwright, 1999) and are still accessed and viewed by millions of users today (Peterson, 2003). While early webbased GIS products lacked a complete set of cartographic capabilities, the functionality within such systems has significantly increased over recent years. Functionalities once found only in desktop GIS products are now available in web-based GIS applications, for example, data entry, basic editing, and analysis. Applications based on web-GIS are becoming more widespread and the web-based GIS environment is replacing the traditional desktop GIS platforms in many organizations. Therefore, development of a new cartographic method for web-based GIS is vital. The broad aim of this project is to examine and discuss the challenges and opportunities of innovative cartography methods for web-based GIS platforms. The work introduces a recently developed cartographic methodology, which is based on a web-based GIS portal by the Survey of Israel (SOI). The work discusses the prospects and constraints of such methods in improving web-GIS interfaces and usability for the end user. The work also tables the preliminary findings of the initial implementation of the web-based GIS cartographic method within the portal of the Survey of Israel, as well as the applicability of those methods elsewhere.
Resumo:
Decision support systems (DSS) have evolved rapidly during the last decade from stand alone or limited networked solutions to online participatory solutions. One of the major enablers of this change is the fastest growing areas of geographical information system (GIS) technology development that relates to the use of the Internet as a means to access, display, and analyze geospatial data remotely. World-wide many federal, state, and particularly local governments are designing to facilitate data sharing using interactive Internet map servers. This new generation DSS or planning support systems (PSS), interactive Internet map server, is the solution for delivering dynamic maps and GIS data and services via the world-wide Web, and providing public participatory GIS (PPGIS) opportunities to a wider community (Carver, 2001; Jankowski & Nyerges, 2001). It provides a highly scalable framework for GIS Web publishing, Web-based public participatory GIS (WPPGIS), which meets the needs of corporate intranets and demands of worldwide Internet access (Craig, 2002). The establishment of WPPGIS provides spatial data access through a support centre or a GIS portal to facilitate efficient access to and sharing of related geospatial data (Yigitcanlar, Baum, & Stimson, 2003). As more and more public and private entities adopt WPPGIS technology, the importance and complexity of facilitating geospatial data sharing is growing rapidly (Carver, 2003). Therefore, this article focuses on the online public participation dimension of the GIS technology. The article provides an overview of recent literature on GIS and WPPGIS, and includes a discussion on the potential use of these technologies in providing a democratic platform for the public in decision-making.
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
Nature Refuges encompass the second largest extent of protected area estate in Queensland. Major problems exist in the data capture, map presentation, data quality and integrity of these boundaries. The spatial accuracies/inaccuracies of the Nature Refuge administrative boundaries directly influence the ability to preserve valuable ecosystems by challenging negative environmental impacts on these properties. This research work is about supporting the Nature Refuge Programs efforts to secure Queensland’s natural and cultural values on private land by utilising GIS and its advanced functionalities. The research design organizes and enters Queensland’s Nature Refuge boundaries into a spatial environment. Survey quality data collection techniques such as the Global Positioning Systems (GPS) are investigated to capture Nature Refuge boundary information. Using the concepts of map communication GIS Cartography is utilised for the protected area plan design. New spatial datasets are generated facilitating the effectiveness of investigative data analysis. The geodatabase model developed by this study adds rich GIS behaviour providing the capability to store, query, and manipulate geographic information. It provides the ability to leverage data relationships and enforces topological integrity creating savings in customization and productivity. The final phase of the research design incorporates the advanced functions of ArcGIS. These functions facilitate building spatial system models. The geodatabase and process models developed by this research can be easily modified and the data relating to mining can be replaced by other negative environmental impacts affecting the Nature Refuges. Results of the research are presented as graphs and maps providing visual evidence supporting the usefulness of GIS as means for capturing, visualising and enhancing spatial quality and integrity of Nature Refuge boundaries.