1000 resultados para Scattering Amplitudes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.

II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.

Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.

It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."

Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the analytic behavior of different few-particle scattering amplitudes at low energies in two space dimensions is presented. Such a study is of use in modeling and understanding different few-particle processes at low energies. A detailed discussion of the energy and the momentum dependence of the partial-wave on-the-energy-shell and off-the-energy-shell two-particle t matrices is given. These t-matrix elements tend to zero as the energy and momentum variables tend to zero. The multiple-scattering series is used to show that the connected three-to-three amplitudes diverge in the low-energy-momentum limit. Unitarity relations are used to show that the connected two-to-three and one-to-three amplitudes have specific logarithmic singularities at the m-particle breakup threshold. The subenergy singularity in the two-to-three amplitudes is also studied, and comments are made on some applications of the present study in different problems of ph cal interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the front form has the largest number of kinematic generators. This distinction provides useful consequences in the analysis of physical observables in hadron physics. Using the method of interpolation between the instant form and the front form, we introduce the interpolating scattering amplitude that links the corresponding time-ordered amplitudes between the two forms of dynamics and provide the physical meaning of the kinematic transformations as they allow the invariance of each individual time-ordered amplitude for an arbitrary interpolation angle. We discuss the rationale for using front form dynamics, nowadays known as light-front dynamics (LFD), and present a few explicit examples of hadron phenomenology that LFD uniquely can offer from first-principles quantum chromodynamics. In particular, model-independent constraints are provided for the analyses of deuteron form factors and the N Delta transition form factors at large momentum transfer squared Q(2). The swap of helicity amplitudes between the collinear and non-collinear kinematics is also discussed in deeply virtual Compton scattering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the gamma p photoproduction and the hadronic gamma gamma total cross sections by means of a QCD eikonal model with a dynamical infrared mass scale. In this model, where the dynamical gluon mass is the natural regulator for the tree level gluon-gluon scattering, the gamma p and gamma gamma total cross sections are derived from the pp and (p) over barp forward scattering amplitudes assuming vector meson dominance and the additive quark model. We show that the validity of the cross section factorization relation sigma(pp)/sigma(gamma p)=sigma(gamma p)/sigma(gamma gamma) is fulfilled depending on the Monte Carlo model used to unfold the hadronic gamma gamma cross section data, and we discuss in detail the case of sigma(gamma gamma -> hadrons) data with W-gamma gamma> 10 GeV unfolded by the Monte Carlo generators PYTHIA and PHOJET. The data seems to favor a mild dependence with the energy of the probability (P-had) that the photon interacts as a hadron.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ampcalculator (AMPC) is a Mathematica (c) based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p(4))) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G(27). Another illustrative set of amplitudes at tree level we provide is in the context of tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using the integrability conditions that we recently obtained in two-dimensional QCD with massless fermions we arrive at a sufficient number of conservation laws to fix the scattering amplitudes involving a local version of the Wilson loop operator.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using pure spinors, the superstring was recently quantized in a manifestly ten-dimensional super-Poincaré covariant manner and a covariant prescription was given for tree-level scattering amplitudes. In this paper, we prove that this prescription is cyclically symmetric and, for the scattering of an arbitrary number of massless bosons and up to four massless fermions, it agrees with the standard Ramond-Neveu-Schwarz prescription.