850 resultados para Scarifier and speed
Resumo:
Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.
Resumo:
Road policing is an important tool used to modify road user behaviour. While other theories, such as deterrence theory, are significant in road policing, there may be a role for using procedural justice as a framework to improve outcomes in common police citizen interactions such as traffic law enforcement. This study, using a sample of 237 young novice drivers, considered how the four elements of procedural justice (voice, neutrality, respect and trustworthiness) were perceived in relation to two forms of speed enforcement: point-to-point (or average) speed and mobile speed cameras. Only neutrality was related to both speed camera types suggesting that it may be possible to influence behaviour by emphasising one or more elements, rather than using all components of procedural justice. This study is important as it indicates that including at least some elements of procedural justice in more automated policing encounters can encourage citizen compliance.
Resumo:
Speed trial results of six 32' wooden stern, trawlers built to the same design are analyzed to determine the EHP ship Froude number curves in each case and are compared with the model test results of the same design and for the corresponding, displacement, conditions.
Resumo:
Park Jae-Sang’s (otherwise known as PSY) bewilderingly successful pop contagion ‘Gangnam Style’ needs no introduction. As of January 2013, it has become the most watched video in YouTube’s history and has garnered over 1.23 billion hits since. ‘Gangnam Style’ has also become a rapid global pop phenomenon with multiple parodic reproductions, imitations and adaptations; Rapper PSY himself has become an international name and styled as the ‘anti-hero’ of the glamour-driven K-pop scene. His fame has transcended the social sphere and permeated the political stratosphere with politicians such as Barrack Obama and David Cameron being among the many whom PSY has exchanged pleasantries with. Apart from breaking ground and creating social and media history in many ways, ‘Gangnam Style’ has even been purported by UN Secretary-General Ban Ki Moon to be a “force for world peace” – cultural barriers are demolished as the world dances. Underlying this sentiment is the video’s almost universal appeal that assumes a supracultural yet equally paradoxical translatability: Korea’s neoteric ‘K-Wave’ phenomenon is at once local yet global, and where the latter is predicated on the former quality. The paper’s concern is thus two-fold. It will consider the dromological aspects of this musical contagion as it exemplifies and performs quite literally Paul Virilio’s thesis that the modern condition is driven by speed yet arrested to a dictatorship of movement. While many theories have been put forward for this astounding pop peculiarity, this paper would also examine the intercultural currents that advocate such a global (pop) cultural response. Through an analysis of sonic qualities – digital techno-beat rhythms, synth-based musicality, cyclical lyrics, horse-galloping movements – and acoustic receptions, it will consider the simultaneous and dichotomous currents of glocalisation and globalisation as it relates to the ways in which sonic ‘hyper-links’ establish new concepts of global-cultural identities even as these seem to be interrogated in the borderless worlds of hyper-mediatised realities and cultural technologies.
Resumo:
Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.
Resumo:
Over the years, grinding has been considered one of the most important manufacturing processes. Grinding is a high precision process, and the loss of a single workpiece in this stage of the production is unacceptable, fir the value added to the material is very high due to many processes it has already undergone prior to grinding. This study aims to contribute toward the development of an experimental methodology whereby the pressure and speed of the air layer produced by the high rotation of the grinding wheel is evaluated with and without baffles, i.e., in an optimized grinding operation and in a traditional one. Tests were also carried out with steel samples to check the difference in grinding wheel wear with and without the use of baffles.
Resumo:
The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more. © 2011 Springer-Verlag.