928 resultados para Scalable vector graphics
Resumo:
In this work, we propose a Geographical Information System that can be used as a tool for the treatment and study of problems related with environmental and city management issues. It is based on the Scalable Vector Graphics (SVG) standard for Web development of graphics. The project uses the concept of remate and real-time mar creation by database access through instructions executed by browsers on the Internet. As a way of proving the system effectiveness, we present two study cases;.the first on a region named Maracajaú Coral Reefs, located in Rio Grande do Norte coast, and the second in the Switzerland Northeast in which we intended to promote the substitution of MapServer by the system proposed here. We also show some results that demonstrate the larger geographical data capability achieved by the use of the standardized codes and open source tools, such as Extensible Markup Language (XML), Document Object Model (DOM), script languages ECMAScript/ JavaScript, Hypertext Preprocessor (PHP) and PostgreSQL and its extension, PostGIS
Resumo:
The XML-based specification for Scalable Vector Graphics (SVG), sponsored by the World Wide Web consortium, allows for compact and descriptive vector graphics for the Web. SVG s domain of discourse is that of graphic primitives whose optional attributes express line thickness, fill patterns, text size and so on. These primitives have very different properties from those of traditional document components (e.g. sections, paragraphs etc.) that XML is normally called upon to express. This paper describes a set of three tools for creating SVG, either from first principles or via the conversion of existing formats. The ab initio generation of SVG is effected from a server-side CGI script, using a PERL library of drawing functions; later sections highlight the problems of converting Adobe PostScript and Macromedia s Shockwave format (SWF) into SVG.
Resumo:
Scalable Vector Graphics (SVG) has an imaging model similar to that of PostScript and PDF but the XML basis of SVG allows it to participate fully, via namespaces, in generalised XML documents.There is increasing interest in using SVG as a Page Description Language and we examine ways in which SVG document components can be encapsulated in contexts where SVG will be used as a rendering technology for conventional page printing.Our aim is to encapsulate portions of SVG content (SVG COGs) so that the COGs are mutually independent and can be moved around a page, while maintaining invariant graphic properties and with guaranteed freedom from side effects and mutual interference. Parellels are drawn between COG implementation within SVG's tree-based inheritance mechanisms and an earlier COG implementation using PDF.
Resumo:
讨论了在网络数据库环境中动态显示分子结构式的问题。数据库中存储分子的结构信息,在检索时动态生成分子结构式图,图形格式为SVG。SVG是一种矢量图形格式,又是一种基于XML的置标语言。用SVG可以动态创建分子结构式图形,而且文件是文本文件,体积小,易于编辑和信息交换。文中给出了从数据库中提取数据,动态生成分子结构式图形的方法。
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper reports some experiments in using SVG (Scalable Vector Graphics), rather than the browser default of (X)HTML/CSS, as a potential Web-based rendering technology, in an attempt to create an approach that integrates the structural and display aspects of a Web document in a single XML-compliant envelope. Although the syntax of SVG is XML based, the semantics of the primitive graphic operations more closely resemble those of page description languages such as PostScript or PDF. The principal usage of SVG, so far, is for inserting complex graphic material into Web pages that are predominantly controlled via (X)HTML and CSS. The conversion of structured and unstructured PDF into SVG is discussed. It is found that unstructured PDF converts into pages of SVG with few problems, but difficulties arise when one attempts to map the structural components of a Tagged PDF into an XML skeleton underlying the corresponding SVG. These difficulties are not fundamentally syntactic; they arise largely because browsers are innately bound to (X)HTML/CSS as their default rendering model. Some suggestions are made for ways in which SVG could be more totally integrated into browser functionality, with the possibility that future browsers might be able to use SVG as their default rendering paradigm.
Resumo:
It is just over 20 years since Adobe's PostScript opened a new era in digital documents. PostScript allows most details of rendering to be hidden within the imaging device itself, while providing a rich set of primitives enabling document engineers to think of final-form rendering as being just a sophisticated exercise in computer graphics. The refinement of the PostScript model into PDF has been amazingly successful in creating a near-universal interchange format for complex and graphically rich digital documents but the PDF format itself is neither easy to create nor to amend. In the meantime a whole new world of digital documents has sprung up centred around XML-based technologies. The most widespread example is XHTML (with optional CSS styling) but more recently we have seen Scalable Vector Graphics (SVG) emerge as an XML-based, low-level, rendering language with PostScript-compatible rendering semantics. This paper surveys graphically-rich final-form rendering technologies and asks how flexible they can be in allowing adjustments to be made to final appearance without the need for regenerating a whole page or an entire document. Particular attention is focused on the relative merits of SVG and PDF in this regard and on the desirability, in any document layout language, of being able to manipulate the graphic properties of document components parametrically, and at a level of granularity smaller than an entire page.
Resumo:
AMS Subj. Classification: 68U05, 68P30
Resumo:
This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
With extensive use of dynamic voltage scaling (DVS) there is increasing need for voltage scalable models. Similarly, leakage being very sensitive to temperature motivates the need for a temperature scalable model as well. We characterize standard cell libraries for statistical leakage analysis based on models for transistor stacks. Modeling stacks has the advantage of using a single model across many gates there by reducing the number of models that need to be characterized. Our experiments on 15 different gates show that we needed only 23 models to predict the leakage across 126 input vector combinations. We investigate the use of neural networks for the combined PVT model, for the stacks, which can capture the effect of inter die, intra gate variations, supply voltage(0.6-1.2 V) and temperature (0 - 100degC) on leakage. Results show that neural network based stack models can predict the PDF of leakage current across supply voltage and temperature accurately with the average error in mean being less than 2% and that in standard deviation being less than 5% across a range of voltage, temperature.
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.