999 resultados para Savanna soil


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os cerradões no Pantanal ocorrem em áreas não inundáveis da planície e são importantes para a economia regional. Das áreas de cerradão são retiradas madeiras para construção de cercas, currais e galpões. Apesar da grande importância dos recursos vegetais do cerradão, existem poucas informações para embasar sua conservação e uso sustentável. Este trabalho teve como objetivos estudar a abundância, a distribuição das espécies arbóreas e correlações com a fertilidade do solo em áreas de cerradão (savana florestada) do Pantanal Sul Mato-grossense. Foram estudadas seis áreas de cerradão na sub-região da Nhecolândia, por meio de 30 pontos quadrantes, totalizando 120 árvores amostradas, com circunferência a altura do peito (CAP) > 15 cm, em cada área. As comparações florísticas, de abundância das espécies e de fertilidade do solo, foram efetuadas por análises de componentes principais (PCA). As áreas mostraram-se heterogêneas, apresentando diferentes níveis de fertilidade do solo, estrutura e composição da vegetação. Dois cerradões foram agrupados em termos de fertilidade do solo e de estrutura da vegetação, apresentando muitas árvores de Qualea grandiflora Mart., espécie que ocorreu associada a solos com maiores teores de fósforo. Outros dois cerradões apresentaram composição florística mais semelhante que os demais, apesar de ocorrerem em solos com diferentes níveis de fertilidade, indicando perturbação antrópica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this research was to evaluate the physical and chemical conditions of revegetated subsoil in degraded areas in a Cerrado biome and to verify which plants promote better conditions for soil recovery. The research was conducted in the remaining area of the hydroelectrical plant site at Ilha Solteira (SP). The experimental design was a completely randomized with five treatments and three replications. The treatments consisted of: natural regeneration area, brachiaria area, Pinus sp. area, exposed soil area and Cerrado grassland (used as control). The following soil characteristics were appraised: porosity; density, stability of aggregates, infiltration rate, temperature, exchangeable cations, organic matter, pH and potential acidity. The results show that Pinus is not a good species to recover the chemical attributes of the subsoil. The revegetated areas need to be improved in their physical attributes to allow a better development of the vegetation. Brachiaria and the natural regeneration were the most promising treatments, presenting results similar to natural Cerrado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rapid growth of agriculture, promoted by public government initiatives, favored an out of control deforestation of our forests; today, reforestation of permanent preservation areas are necessary for the conservation of our natural resources, and recovery of such areas are required by public laws. In an area of 5.26 acres of riparian reforestation in the savanna soil chemical properties were evaluated after twenty years of planting. It was analyzed the following variables: (P, organic matter (MO), pH, K, Ca, Mg, H+Al, Al and S) in 13 modules, with three replicas in two depths (0 - 20 and 20 - 40 cm) in a randomized block design in hierarchical scheme. Reforestation with tree species on the edge of Parana river in Selvíria (MS) contributes to chemical soil attributes, under riparian reforestation, as similar as a soil without human disturbance in this region; it is also possible to verify that forestry plantation promotes deposition of organic material which is essential for nutrient cycling, which keep the chemical properties of such soil in good condition for the establishment of riparian vegetation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La fijación biológica de nitrógeno (FBN) es un proceso que ocurre en la naturaleza y representa la fuente de N más barata para los suelos ácidos del trópico húmedo. El objetivo de este trabajo fue cuantificar la cantidad de N fijado por cuatro especies de fabáceas a través de técnicas isotópicas con 15N, en un suelo de sabana en México. Los tratamientos se establecieron bajo un diseño de bloques completos al azar, con cuatro repeticiones. Las variables evaluadas fueron; biomasa fresca (BF), materia seca (MS), número de nódulos (NN), masa seca de nódulos (MSN), Nitrógeno total (Nt) y Nitrógeno fijado biológicamente (Nf). Los resultados muestran que Mucuna deerengiana L. presentó mayor producción de BF y MS (17,50 y 5,47 Mg ha-1) así como MSN (58,79 mg planta-1) y también mayor contenido de Nt y Nf (526,94 y 522,11 kg ha-1) respectivamente, en comparación con Cajanus cajan L., Phaseolus lunatus L. y Sesbania emerus L., especies que mostraron valores bajos en dichas variables. Se concluye que Mucuna deerengiana L. tolera bien los factores desfavorables que predominan en los suelos ácidos y por ello expresa una eficiencia superior a 500 kg ha-1 de Nf; se considera adecuada para aumentar el nivel de nitrógeno en los suelos de sabana sin aplicar fertilizantes químicos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire is common in savannas but its effects on soil are poorly understood. We analyzed long-term effects of fire on surface soil of an open Brazilian savanna (campo sujo) in plots submitted to different fire regimes during 18 years. The five fire regimes were: unburned, quadrennial fires in middle dry season, and biennial fires in early, middle or late dry season. Soil was collected during the wet and the middle dry season of 2008, and analyzed for pH, organic matter, total N, potential acidity, exchangeable cations and available P, S, Mn, Cu, Zn and Fe. We applied multivariate analysis to search for patterns related to fire regimes, and to local climate, fuel, and fire behavior. Spearman test was used to establish correlations between soil variables and the multivariate analysis gradient structure. Seasonal differences were tested using t-test. We found evidence of long-term fire effects: the unburned plot was segregated mainly by lower soil pH; the quadrennial plot was also segregated by lower soil pH and higher amount of exchangeable cations; the time of burning during the dry season in biennial plots did not significantly affect soil availability of nutrients. Differences in elements amounts due to the season of soil sampling (wet or dry) were higher than due to the effect of fires. Higher availability of nutrients in the soil during the wet season was probably related to higher nutrient inputs via rainfall and higher microbial activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is an important driver of nutrient cycling in savannas. Here, we determined the impact of fire frequency on total and soluble soil nitrogen (N) pools in tropical savanna. The study sites consisted of 1-ha experimental plots near Darwin, Australia, which remained unburnt for at least 14 years or were burnt at 1-, 2- or 5-year intervals over the past 6 years. Soil was analysed from patches underneath tree canopies and in inter-canopy patches at 1, 12, 28, 55 and 152 days after fire. Patch type had a significant effect on all soil N pools, with greater concentrations of total and soluble (nitrate, ammonium, amino acids) N under tree canopies than inter-canopy patches. The time since the last fire had no significant effect on N pools. Fire frequency similarly did not affect total soil N but it did influence soluble soil N. Soil amino acids were most prominent in burnt savanna, ammonium was highest in infrequently burnt (5-year interval) savanna and nitrate was highest in unburnt savanna. We suggest that the main effect of fire on soil N relations occurs indirectly through altered tree-grass dynamics. Previous studies have shown that high fire frequencies reduce tree cover by lowering recruitment and increasing mortality. Our findings suggest that these changes in tree cover could result in a 30% reduction in total soil N and 1060% reductions in soluble N pools. This finding is consistent with studies from savannas globally, providing further evidence for a general theory of patchiness as a key driver of nutrient cycling in the savanna biome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian Cerrado houses a hugely diverse biota and is considered a conservation hotspot. One of the greatest threats to the integrity of this ecosystem is introduced African grasses, which can competitively exclude native grasses and cause changes in the microclimate and other disturbances. The Cerrado is a mosaic vegetation that provides different combinations, both spatially and temporally, of conditions that can become natural stressors to the herbaceous vegetation (water, nutrient and light availability). These mosaics are reflected in differences in relationships among native and invasive species, affecting competition and creating situations (place/season) that are more, or less, susceptible to invasion. The present study aimed to identify the different biological responses of native (Aristida recurvata, Aristida setifolia, Axonopus barbigerus, Echinolaena inflexa, Gymnopogon spicatus, Paspalum gardnerianum, Paspalum stellatum, Schizachyrium microstachyum, Schizachyrium sanguineum) and invasive (Melinis minutiflora and Andropogon gayanus) grasses to variations in natural stressors and to disturbance (fire and clipping), in order to understand changes in ecosystem functioning and competition processes between the grasses, and to understand invasion dynamics in this ecosystem. The presence of invasive species proved to affect the ecosystem functioning by increasing soil feeding activity. These differences were no longer observed in the dry season or when fires were frequent, showing that water availability and fire are more detrimental to soil feeding activity than is the vegetation. Laboratory experiments showed that both drought and flood simulated scenarios damaged both species, although the invasive species performed better under all watering conditions and responded better to fertilization. Underlying mechanisms such as the efficiency of photosynthesis and antioxidant mechanisms helped to explain this behavior. The invasive species grew faster and showed less cellular damage and a healthier photosystem, reflected in higher assimilation rates under stress. These differences between the native and invasive species were reduced with clipping, especially in dry soil with no fertilization, where the native species recovered better in relation to the pre-clipping levels. Flooding was as stressful as drought, but the invasive species can bypass this issue by growing an extensive root system, especially in the better-drained soils. Fire is more detrimental than clipping, with a slower recovery, while post-fire temperatures affect the germination of both invasive and native seeds and may be an important factor influencing the persistence of a diverse biota. This approach will finally contribute to the choice of the appropriate management techniques to preserve the Cerrado’s biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.