929 resultados para Satellite images
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.
Resumo:
Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.
Resumo:
One of the most important marine ecological phenomena is red tide which is created by increasing of phytoplankton population, influenced by different factors such as climate condition changes, utrification hydrological factors and can leave sever and undesired ecological and economical effects behind itself in the case of durability. Coast line of Hormozgan is about 900km from east to west, within the range of geographical coordinates of 56 16 23.8, 26 58 8.8 to 54 34 5.33 and 26 34 32 eastern longitude and northern latitude, seven sampling stations were considered and sampled for a period of one year from October 2008 to October 2009. after the analysis of Satellite images, monthly, during the best time. In several stages, samplings were performed. In each station, three samples were collected for identification and determination of Bloom- creating species abundance. Cochlodinium polykrikoides was the species responsible for the discoloration which occurred at October 2008 in Hormozgan marine water. Environmental parameters such as sea surface temperature, pH, salinity, Dissolved Oxygen concentration, Total Dissolved Solids (T.D.S.), conductivity, nitrate, nitrite and phosphate and also chlorophyll a were measured and calculated. Kruscal Wallis test was used to compare the densities between different months, seasons and the studied stations. Mann-whitney test from Nonparametric Tests was used for couple comparison. Pearson correlation coefficient was used to determine the relationship between physical and chemical data set and the abundance of Cochlodinium polykrikoides. Multivariate Regression and analysis of variance (ANOVA) also were used to obtain the models and equations of red tide occurrence relationship, environmental parameters and nutrient data. The highest density was 26 million cells per liter in Qeshm station. A meaningful difference was observed between sampling months and seasons but there was no between sampling stations which indicates that in favorable conditions, the occurrence of this phenomenon by the studied species is probable. Regarding to β coefficients of nitrate, temperature, phosphate, Total Dissolvable Solutions (T.D.S) and pH these parameters are effective on the abundance of this species and red tide occurrence. Increase in these factors can represent the effects and outcomes of human activities and increase in marine pollution.
Resumo:
p.109-119
Resumo:
The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.
Resumo:
Urbanization refers to the process in which an increasing proportion of a population lives in cities and suburbs. Urbanization fuels the alteration of the Land use/Land cover pattern of the region including increase in built-up area, leading to imperviousness of the ground surface. With increasing urbanization and population pressures; the impervious areas in the cities are increasing fast. An impervious surface refers to an anthropogenic ally modified surface that prevents water from infiltrating into the soil. Surface imperviousness mapping is important for the studies related to water cycling, water quality, soil erosion, flood water drainage, non-point source pollution, urban heat island effect and urban hydrology. The present study estimates the Total Impervious Area (TIA) of the city of Kochi using high resolution satellite image (LISS IV, 5m. resolution). Additionally the study maps the Effective Impervious Area (EIA) by coupling the capabilities of GIS and Remote Sensing. Land use/Land cover map of the study area was prepared from the LISS IV image acquired for the year 2012. The classes were merged to prepare a map showing pervious and impervious area. Supervised Maximum Likelihood Classification (Supervised MLC),which is a simple but accurate method for image classification, is used in calculating TIA and an overall classification accuracy of 86.33% was obtained. Water bodies are 100% pervious, whereas urban built up area are 100% impervious. Further based on percentage of imperviousness, the Total Impervious Area is categorized into various classes
Resumo:
An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A computer program, PhotoLin, written for an IBM-PC-compatible microcomputer is described which detects linear features in aerial photographs, satellite images and topographic maps. The program accepts images saved to PCX files as input and applies noise correction and smoothing filters and thinning routines. The output consists of a skeleton containing the median lines of linear features which can be represented on a map. The branches of the skeleton can be broken into sections of constant length for which the mean orientations are obtained for the preparation of rose diagrams. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo: