970 resultados para Satellite constellations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, we return to live a period of lunar exploration. China, Japan and India heavily invest in missions to the moon, and then try to implement manned bases on this satellite. These bases must be installed in polar regions due to the apparent existence of water. Therefore, the study of the feasibility of satellite constellations for navigation, control and communication recovers importance. The Moon's gravitational potential and resonant movements due to the proximity to Earth as the Kozai-Lidov resonance, must be considered in addition to other perturbations of lesser magnitude. The usual satellite constellations provide, as a basic feature, continuous and global coverage of the Earth. With this goal, they are designed for the smallest number of objects possible to perform a specific task and this amount is directly related to the altitude of the orbits and visual abilities of the members of the constellation. However the problem is different when the area to be covered is reduced to a given zone. The required number of space objects can be reduced. Furthermore, depending on the mission requirements it may be not necessary to provide continuous coverage. Taking into account the possibility of setting up a constellation that covers a specific region of the Moon on a non-continuous base, in this study we seek a criterion of optimization related to the time between visits. The propagation of the orbits of objects in the constellation in conjunction with the coverage constraints, provide information on the periods of time in which points of the surface are covered by a satellite, and time intervals in which they are not. So we minimize the time between visits considering several sets of possible constellations and using genetic algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary ring (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and recently surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA’s Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. A first series of surveys of Molnjya-type orbits was performed between January and April 2013. During these four months survey observations were performed during nine nights. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly discovered faint objects were also acquired with AIUB ́s 1m ZIMLAT telescope in Zimmerwald, Switzerland. Eventually 195 basic surveys were performed during these nine nights corresponding to about 32.5 hours of observations. In total 24 uncorrelated faint objects were discovered and all known catalogue objects in the survey fields were detected. On average one uncorrelated object was found every 80 minutes. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reliability of carrier phase ambiguity resolution (AR) of an integer least-squares (ILS) problem depends on ambiguity success rate (ASR), which in practice can be well approximated by the success probability of integer bootstrapping solutions. With the current GPS constellation, sufficiently high ASR of geometry-based model can only be achievable at certain percentage of time. As a result, high reliability of AR cannot be assured by the single constellation. In the event of dual constellations system (DCS), for example, GPS and Beidou, which provide more satellites in view, users can expect significant performance benefits such as AR reliability and high precision positioning solutions. Simply using all the satellites in view for AR and positioning is a straightforward solution, but does not necessarily lead to high reliability as it is hoped. The paper presents an alternative approach that selects a subset of the visible satellites to achieve a higher reliability performance of the AR solutions in a multi-GNSS environment, instead of using all the satellites. Traditionally, satellite selection algorithms are mostly based on the position dilution of precision (PDOP) in order to meet accuracy requirements. In this contribution, some reliability criteria are introduced for GNSS satellite selection, and a novel satellite selection algorithm for reliable ambiguity resolution (SARA) is developed. The SARA algorithm allows receivers to select a subset of satellites for achieving high ASR such as above 0.99. Numerical results from a simulated dual constellation cases show that with the SARA procedure, the percentages of ASR values in excess of 0.99 and the percentages of ratio-test values passing the threshold 3 are both higher than those directly using all satellites in view, particularly in the case of dual-constellation, the percentages of ASRs (>0.99) and ratio-test values (>3) could be as high as 98.0 and 98.5 % respectively, compared to 18.1 and 25.0 % without satellite selection process. It is also worth noting that the implementation of SARA is simple and the computation time is low, which can be applied in most real-time data processing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies receiver autonomous integrity monitoring (RAIM) algorithms and performance benefits of RTK solutions with multiple-constellations. The proposed method is generally known as Multi-constellation RAIM -McRAIM. The McRAIM algorithms take advantage of the ambiguity invariant character to assist fast identification of multiple satellite faults in the context of multiple constellations, and then detect faulty satellites in the follow-up ambiguity search and position estimation processes. The concept of Virtual Galileo Constellation (VGC) is used to generate useful data sets of dual-constellations for performance analysis. Experimental results from a 24-h data set demonstrate that with GPS&VGC constellations, McRAIM can significantly enhance the detection and exclusion probabilities of two simultaneous faulty satellites in RTK solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis se desarrolla dentro del marco de las comunicaciones satelitales en el innovador campo de los pequeños satélites también llamados nanosatélites o cubesats, llamados así por su forma cubica. Estos nanosatélites se caracterizan por su bajo costo debido a que usan componentes comerciales llamados COTS (commercial off-the-shelf) y su pequeño tamaño como los Cubesats 1U (10cm*10 cm*10 cm) con masa aproximada a 1 kg. Este trabajo de tesis tiene como base una iniciativa propuesta por el autor de la tesis para poner en órbita el primer satélite peruano en mi país llamado chasqui I, actualmente puesto en órbita desde la Estación Espacial Internacional. La experiencia de este trabajo de investigación me llevo a proponer una constelación de pequeños satélites llamada Waposat para dar servicio de monitoreo de sensores de calidad de agua a nivel global, escenario que es usado en esta tesis. Es ente entorno y dadas las características limitadas de los pequeños satélites, tanto en potencia como en velocidad de datos, es que propongo investigar una nueva arquitectura de comunicaciones que permita resolver en forma óptima la problemática planteada por los nanosatélites en órbita LEO debido a su carácter disruptivo en sus comunicaciones poniendo énfasis en las capas de enlace y aplicación. Esta tesis presenta y evalúa una nueva arquitectura de comunicaciones para proveer servicio a una red de sensores terrestres usando una solución basada en DTN (Delay/Disruption Tolerant Networking) para comunicaciones espaciales. Adicionalmente, propongo un nuevo protocolo de acceso múltiple que usa una extensión del protocolo ALOHA no ranurado, el cual toma en cuenta la prioridad del trafico del Gateway (ALOHAGP) con un mecanismo de contienda adaptativo. Utiliza la realimentación del satélite para implementar el control de la congestión y adapta dinámicamente el rendimiento efectivo del canal de una manera óptima. Asumimos un modelo de población de sensores finito y una condición de tráfico saturado en el que cada sensor tiene siempre tramas que transmitir. El desempeño de la red se evaluó en términos de rendimiento efectivo, retardo y la equidad del sistema. Además, se ha definido una capa de convergencia DTN (ALOHAGP-CL) como un subconjunto del estándar TCP-CL (Transmission Control Protocol-Convergency Layer). Esta tesis muestra que ALOHAGP/CL soporta adecuadamente el escenario DTN propuesto, sobre todo cuando se utiliza la fragmentación reactiva. Finalmente, esta tesis investiga una transferencia óptima de mensajes DTN (Bundles) utilizando estrategias de fragmentación proactivas para dar servicio a una red de sensores terrestres utilizando un enlace de comunicaciones satelitales que utiliza el mecanismo de acceso múltiple con prioridad en el tráfico de enlace descendente (ALOHAGP). El rendimiento efectivo ha sido optimizado mediante la adaptación de los parámetros del protocolo como una función del número actual de los sensores activos recibidos desde el satélite. También, actualmente no existe un método para advertir o negociar el tamaño máximo de un “bundle” que puede ser aceptado por un agente DTN “bundle” en las comunicaciones por satélite tanto para el almacenamiento y la entrega, por lo que los “bundles” que son demasiado grandes son eliminados o demasiado pequeños son ineficientes. He caracterizado este tipo de escenario obteniendo una distribución de probabilidad de la llegada de tramas al nanosatélite así como una distribución de probabilidad del tiempo de visibilidad del nanosatélite, los cuales proveen una fragmentación proactiva óptima de los DTN “bundles”. He encontrado que el rendimiento efectivo (goodput) de la fragmentación proactiva alcanza un valor ligeramente inferior al de la fragmentación reactiva. Esta contribución permite utilizar la fragmentación activa de forma óptima con todas sus ventajas tales como permitir implantar el modelo de seguridad de DTN y la simplicidad al implementarlo en equipos con muchas limitaciones de CPU y memoria. La implementación de estas contribuciones se han contemplado inicialmente como parte de la carga útil del nanosatélite QBito, que forma parte de la constelación de 50 nanosatélites que se está llevando a cabo dentro del proyecto QB50. ABSTRACT This thesis is developed within the framework of satellite communications in the innovative field of small satellites also known as nanosatellites (<10 kg) or CubeSats, so called from their cubic form. These nanosatellites are characterized by their low cost because they use commercial components called COTS (commercial off-the-shelf), and their small size and mass, such as 1U Cubesats (10cm * 10cm * 10cm) with approximately 1 kg mass. This thesis is based on a proposal made by the author of the thesis to put into orbit the first Peruvian satellite in his country called Chasqui I, which was successfully launched into orbit from the International Space Station in 2014. The experience of this research work led me to propose a constellation of small satellites named Waposat to provide water quality monitoring sensors worldwide, scenario that is used in this thesis. In this scenario and given the limited features of nanosatellites, both power and data rate, I propose to investigate a new communications architecture that allows solving in an optimal manner the problems of nanosatellites in orbit LEO due to the disruptive nature of their communications by putting emphasis on the link and application layers. This thesis presents and evaluates a new communications architecture to provide services to terrestrial sensor networks using a space Delay/Disruption Tolerant Networking (DTN) based solution. In addition, I propose a new multiple access mechanism protocol based on extended unslotted ALOHA that takes into account the priority of gateway traffic, which we call ALOHA multiple access with gateway priority (ALOHAGP) with an adaptive contention mechanism. It uses satellite feedback to implement the congestion control, and to dynamically adapt the channel effective throughput in an optimal way. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of effective throughput, delay and system fairness. In addition, a DTN convergence layer (ALOHAGP-CL) has been defined as a subset of the standard TCP-CL (Transmission Control Protocol-Convergence Layer). This thesis reveals that ALOHAGP/CL adequately supports the proposed DTN scenario, mainly when reactive fragmentation is used. Finally, this thesis investigates an optimal DTN message (bundles) transfer using proactive fragmentation strategies to give service to a ground sensor network using a nanosatellite communications link which uses a multi-access mechanism with priority in downlink traffic (ALOHAGP). The effective throughput has been optimized by adapting the protocol parameters as a function of the current number of active sensors received from satellite. Also, there is currently no method for advertising or negotiating the maximum size of a bundle which can be accepted by a bundle agent in satellite communications for storage and delivery, so that bundles which are too large can be dropped or which are too small are inefficient. We have characterized this kind of scenario obtaining a probability distribution for frame arrivals to nanosatellite and visibility time distribution that provide an optimal proactive fragmentation of DTN bundles. We have found that the proactive effective throughput (goodput) reaches a value slightly lower than reactive fragmentation approach. This contribution allows to use the proactive fragmentation optimally with all its advantages such as the incorporation of the security model of DTN and simplicity in protocol implementation for computers with many CPU and memory limitations. The implementation of these contributions was initially contemplated as part of the payload of the nanosatellite QBito, which is part of the constellation of 50 nanosatellites envisaged under the QB50 project.