144 resultados para Sargassum muticum
Resumo:
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F-ST ) among the populations. The Mantel test showed that two types of matrices of D and F-ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.
Resumo:
Sargassum muticum is an invasive brown macroalga that originates from Japan. In the introduced range, thalli can grow in soft substratum habitats attached to embedded rock fragments and shells, Within Strangford Lough, Northern Ireland, S. muticum has rapidly colonised large areas of soft substrata, where dispersal by peripatetic or 'stone-walking' plants is very effective. Sediment cores were collected under and outside canopies of S. muticum in Strangford Lough (S. muticum first recorded there in 1995) and Langstone Harbour, English Channel (S. muticum first found there in 1974) to investigate modification of the infaunal assemblages. At both study sites, community analyses highlighted significant differences between the assemblages under the canopies and those in adjacent unvegetated areas. In Strangford Lough, the invertebrate community under the canopy contained a higher abundance of smaller, opportunistic, r-selected species than outside the canopy. By contrast, the communities under and outside the canopy at Langstone Harbour were similar in species composition, diversity and dominance, but overall faunal abundance was greater under the canopy. Sediment characteristics were not affected by S. muticum canopies, but the infaunal changes may be related to environmental modification; shading, flow suppression and temperature stratification were also investigated. The differences between these 2 sites indicate that localised conditions and/or the duration of colonisation of S. muticum are important in determining the nature of habitat modification.
Resumo:
A photoperiodic response of erect thallus production has been quantified in Sargassum muticum. Young germlings were cultured under long-day (LD; 16:8 h) conditions at 16 degreesC, 75 mumol m(-2) s(-1) until they had 4-5 early blades after 60 days in culture. The young thalli were transferred to short-day (SD; 8:16 h) and night break (NB; 8:7.5:1:7.5 h) regimes. Up to 34.7% of the plants had produced erect thalli after 140 days in culture in the SD regime, but no erect thalli were formed in the NB regime. When plants were transferred from NB to SD regimes, erect thalli were initiated within 10 days, but continued to be produced in plants transferred from SD to NB. Therefore, the development of erect thalli in S. muticum is a genuine photoperiodic response, which is inhibited by NB treatments, but continues in a NB regime after sufficient induction in SD.
Resumo:
The overall biotic pressure on a newly introduced species may be less than that experienced within its native range, facilitating invasion. The brown alga Sargassum muticum (Yendo) Fensholt is a conspicuous and successful invasive species originally from Japan and China. We compared S. muticum and native macroalgae with respect to the biotic pressures of mesoherbivore grazing and ectocarpoid fouling. In Strangford Lough, Northern Ireland, S. muticum thalli were as heavily overgrown with seasonal blooms of epiphytic algae as native macroalgal species were. The herbivorous amphipod Dexamine spinosa was much more abundant on S. muticum than on any native macroalga. When cultured with this amphipod, S. muticum lost more tissue than three native macroalgae, Saccharina latissima (Linnaeus) Lane et al., Halidrys siliquosa (Linnaeus) Lyngbye and Fucus serratus Linnaeus. Sargassum muticum cultured with both ectocarpoid fouling and amphipods showed a severe impact, consistent with our previous findings of large declines in the density of S. muticum observed in the field during the peak of fouling. Despite being a recent introduction into the macroalgal community in Strangford Lough, S. muticum appears to be under biotic pressure at least equal to that on native species, suggesting that release from grazing and epiphytism does not contribute to the invasiveness of this species in Strangford Lough.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Especialização em Ecologia e Conservação, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Centro de Biodiversidad y Gestión Ambiental, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain