992 resultados para Sandstone sedimentology
Resumo:
Estudios estratigráficos y sedimentológicos de afloramiento y el análisis paleoecológico y bioestratigráfico mediante foraminíferos, han permitido realizar una reinterpretación sedimentaria de las unidades de margas y areniscas miocenas del sector nororiental de la Cuenca del Guadalquivir. El relleno sedimentario ha sido dividido en cuatro unidades litoestratigráficas (I-IV), todas ellas depositadas durante el Tortoniense, entre 10 y 7.89 Ma, aproximadamente. La Unidad I (Tortoniense antiguo no basal) está fomada por arenas y calizas de algas, y es interpretada como una unidad transgresiva y expansiva sobre el basamento que evoluciona desde ambientes marinos someros a rampa de carbonatos tipo rhodalgal. La Unidad II (Tortoniense inferior, biozona MMi11: entre 10 y 9.54 Ma) está caracterizada por una alternancia rítmica de margas arcillosas y silíceas, depositadas en ambientes pelágicos y profundos de aguas frías-eutróficas, si bien con repetidos cambios en la estratificación y distribución de nutrientes en la columna de agua. Esta unidad registra una importante somerización en su parte superior, dando paso gradual a la Unidad III. La Unidad III (Tortoniense inferior, biozonaMMi11: desde 9.54 Ma) está dominada por areniscas, aunque lateralmente aparecen brechas intraformacionales con estratos contorsionados. Está nutrida por deltas desde la costa y se interpreta como el depósito de bancos arenosos movilizados por la acción de corrientes mareales y el oleaje de tormentas en rampas. La Unidad IV (Tortoniense superior, biozona MMi12: desde 8.35 Ma) está representada por margas pelágicas similares a las de la Unidad II, de la que difiere por la presencia de intercalaciones arenosas genéticamente relacionadas con procesos mareales y de tormentas.
Resumo:
The lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.
Resumo:
Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.
Resumo:
The Triassic rocks of Central England consist of three major stratigraphic units: Sherwood Sandstone Group, Mercia Mudstone Group, and Penarth Group. The lower part of the Sherwood Sandstone Group represented by the Kidderminster, Cannock Chase, and Polesworth Formations represents pebbly braided river deposits carried by a major fluvial system flowing to the North-Northwest. The upper part of the Sherwood Sandstone Group includes the Wildmoor and Bromsgrove Sandstone Formations, the deposits of a sandy alluvial system. The Mercia Mudstone Group represents quiet-water deposits of marginal palya type which were subjected to occasional marine flooding. The overlying Penarth Group represent shallow marine and lagoonal environment associated with the Rhaetian marine transgression. The mineralogy of the Triassic sandstones indicates that the main source was from medium to low rank metamorphic rocks with additional supplies from igneous and metamorphic rocks. The study of size-composition trends shows that the climate was semiarid in early Triassic time and became more humid later. The Triassic sandstones show a variety of diagenetic features typical of continental red beds; these include: 1. the dissolution of unstable ferromagnesian silicates, 2. the replacement of detrital grains by clay, 3. the pseudomorphism of biotite by haematite, and 4. the formation of a suite of authigenic minerals including quartz, illite, mixed-layer illite-montmorillonite, kaolinite, k-feldspar, haematite, titanium oxide and later carbonate cement. Palaeomagnetic studies of selected samples show that the magnetization is muticomponent with the various components being carried by different textural phases of haematite.
Resumo:
The thesis provides a comparative study of both sedimentology and diagenesis of Lower Permian (Rotliegend) strata, onshore and offshore U.K. (Southern North Sea). Onshore formations studied include the Bridgnorth, Penrith and Hopeman Sandstone, and are dominated by aeolian facies, with lesser amounts of interbedded fluvial sediments. Aeolian and fluvial strata in onshore basins typically grade laterally into alluvial fan breccias at basin margins. Onshore basins represent proximal examples of Rotliegend desert sediments. The Leman Sandstone Formation of the Ravenspurn area in the Southern North Sea displays a variety of facies indicative of a distal sedimentological setting; Aeolian, fluvial, sabkha, and playa lake sediments all being present. "Sheet-like" geometry of stratigraphical units within the Leman Sandstone, and alternation of fluvial and aeolian deposition was climatically controlled. Major first order bounding surfaces are laterally extensive and were produced by lacustrine transgression and regression from the north-west. Diagenesis within Permian strata was studied using standard petrographic microscopy, scanning electron microscopy, cold cathodo-Iuminescence, X-ray diffraction clay analysis, X-ray fluorescence spectroscopy, fluid inclusion microthermometry, and K-Ar dating of illites. The diagenesis of Permian sediments within onshore basins is remarkably similar, and a paragenetic sequence of early haematite, illitic clays, feldspar, kaolinite, quartz and late calcite is observed. In the Leman Sandstone formation, authigenic mineralogy is complex and includes early quartz, sulphates and dolomite, chlorite, kaolinite, late quartz, illite and siderite. Primary lithological variation, facies type, and the interdigitation and location of facies within a basin are important initial controls upon diagenesis. Subsequently, burial history, structure, the timing of gas emplacement, and the nature of sediments within underlying formations may also exersize significant controls upon diagenesis within Rotliegend strata.
Resumo:
Landscape architecture is built from place. What place is depends how one reads a site, which then determines what qualities are engaged with, and how they are engaged with, by design. Sydney Harbour is one of the most celebrated and distinctive harbours in the world. The qualities of the indigenous, pre-European landscape have been referred to regularly in the history of Australian landscape architecture as a source of inspiration for a truly Australian language of landscape design. A range of different models of such an Australian language have been proposed and tested on landscape design sites on Sydney Harbour, models that are in a discourse both with the specific landscape and with local landscape architecture theory and practice, particularly in relation to ideas of ‘appropriateness’ in Australian landscape architecture. This essay examines arguments from the 1970s that proposed a ‘palette’ approach to appropriateness, along with a key project from that period, Long Nose Point Park, that demonstrates this approach. The essay will then discuss three recent projects on the Harbour and demonstrate that these projects transcend the ‘palette’ approach by engaging with specific relationships on their sites (a ‘relationships’ approach) that are tied to the cultural occupation of Sydney Harbour. Along the way, the reader will be introduced to the key figures and history of landscape architecture in Australia, and to the geography of Sydney Harbour with its various ecologies and milieus
Resumo:
Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).
Resumo:
Authigenic illite-smectite and chlorite in reservoir sandstones from several Pacific rim sedimentary basins in Australia and New Zealand have been examined using an Electroscan Environmental Scanning Electron Microscope (ESEM) before, during, and after treatment with fresh water and HCl, respectively. These dynamic experiments are possible in the ESEM because, unlike conventional SEMs that require a high vacuum in the sample chamber (10-6 torr), the ESEM will operate at high pressures up to 20 torr. This means that materials and processes can be examined at high magnifications in their natural states, wet or dry, and over a range of temperatures (-20 to 1000 degrees C) and pressures. Sandstones containing the illite-smectite (60-70% illite interlayers) were flushed with fresh water for periods of up to 12 hours. Close examination of the same illite-smectite lines or filled pores, both before and after freshwater treatments, showed that the morphology of the illite-smectite was not changed by prolonged freshwater treatment. Chlorite-bearing sandstones (Fe-rich chlorite) were reacted with 1M to 10M HCl at temperatures of up to 80 degrees C and for periods of up to 48 hours. Before treatment the chlorites showed typically platy morphologies. After HCl treatment the chlorite grains were coated with an amorphous gel composed of Ca, Cl, and possibly amorphous Si, as determined by EDS analyses on the freshly treated rock surface. Brief washing in water removed this surface coating and revealed apparently unchanged chlorite showing no signs of dissolution or acid attack. However, although the chlorite showed no morphological changes, elemental analysis only detected silicon and oxygen.