10 resultados para Salmonis farionis
Resumo:
Gill disease in salmonids is characterized by a multifactorial aetiology. Epitheliocystis of the gill lamellae caused by obligate intracellular bacteria of the order Chlamydiales is one known factor; however, their diversity has greatly complicated analyses to establish a causal relationship. In addition, tracing infections to a potential environmental source is currently impossible. In this study, we address these questions by investigating a wild brown trout (Salmo trutta) population from seven different sites within a Swiss river system. One age class of fish was followed over 18 months. Epitheliocystis occurred in a site-specific pattern, associated with peak water temperatures during summer months. No evidence of a persistent infection was found within the brown trout population, implying an as yet unknown environmental source. For the first time, we detected 'Candidatus Piscichlamydia salmonis' and 'Candidatus Clavochlamydia salmonicola' infections in the same salmonid population, including dual infections within the same fish. These organisms are strongly implicated in gill disease of caged Atlantic salmon in Norway and Ireland. The absence of aquaculture production within this river system and the distance from the sea, suggests a freshwater origin for both these bacteria and offers new possibilities to explore their ecology free from aquaculture influences.
Resumo:
Sea lice (Lepeophtheirus salmonis) are an economically significant parasite in salmonid aquaculture. They exhibit temperature-dependent development rates and salinity-dependent mortality, which can greatly impact sea lice population dynamics, but no deterministic models have incorporated these seasonal variables. To understand how seasonality affects sea lice population dynamics, I derive a delay differential equation model with temperature and salinity dependence. I find that peak reproductive output in Newfoundland and British Columbia differs by four months. A sensitivity analysis shows sea lice abundance is most sensitive to variation in mean annual water temperature and salinity, whereas it is lease sensitive to infection rate. Additionally, I investigate the effects of production cycle timing on sea lice management and find that optimal production cycle start times are between the 281st and 337th days of the year in Newfoundland. I also demonstrate that adjusting follow-up treatment timing in response to temperature can improve treatment regimes. My results suggest that effective sea lice management requires consideration of local temperature and salinity patterns.
Resumo:
Acknowledgements The authors would like to thank M. N. Cueto and J. M. Antonio (ECOBIOMAR) for molecular analysis and technical support. K. MacKenzie (University of Aberdeen) and A. Roura (ECOBIOMAR) assisted with the taxonomic identification of parasites. We are also grateful to P. Caballero (Service Nature Conservation of the Xunta de Galicia) for fish sampling support.
Resumo:
La piscirickettsiosis es una enfermedad contagiosa sistémica de los peces teleósteos cuyo agente causal es Piscirickettsia salmonis, una bacteria gram negativa intracelular facultativa. Esta enfermedad se ha descrito esporádicamente en distintas áreas geográficas y especies de peces en el mundo, pero es endémica y particularmente severa en salmónidos criados en agua de mar en Chile. En esta tesis se investigaron algunos aspectos de la patogénesis de esta enfermedad, estudiándose la infectividad de P. salmonis, tanto in vitro como in vivo, y buscándose además evidencias de la capacidad de secretar exotoxinas por parte de esta bacteria. Los ensayos de infectividad en células CHSE-214, procedentes de embrión de salmón chinook (Oncorhynchus tshawytscha), mostraron que existe una rápida adherencia de la bacteria a la superficie de la membrana plasmática (≤ 5 min posinoculación) seguida de su incorporación al citoplasma de estas células, proceso que ocurre entre las 3 y las 6 h posinoculación. Por su parte, el estudio de infectividad in vivo, que se realizó en trucha arcoiris (O. mykiss), reveló que este proceso comprende tres etapas principales: (i) una fase de rápida adhesión a células epiteliales principalmente de piel y branquias, pero también del canal alimentario; (ii) una invasión progresiva desde los sitios de entrada hacia tejidos más profundos hasta alcanzar el torrente sanguíneo y; (iii) una rápida diseminación vía hematógena para alcanzar virtualmente todos los tejidos corporales. Finalmente, se demostró que P. salmonis puede secretar exotoxinas termolábiles que tienen un efecto citotóxico selectivo según la célula blanco expuesta y que, probablemente, son parte de los factores de virulencia involucrados en la patogénesis de la piscirickettsiosis.
Resumo:
Three cohorts of farmed yellowtail kingfish (Seriola lalandi) from South Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To characterize the bacteria, 38 gill samples were processed for histopathology, electron microscopy, and 16S rRNA amplification, sequencing, and phylogenetic analysis. Microscopically, the presence of membrane-enclosed cysts was observed within the gill lamellae. Also observed was hyperplasia of the epithelial cells with cytoplasmic vacuolization and fusion of the gill lamellae. Transmission electron microscopy revealed morphological features of the reticulate and intermediate bodies typical of members of the order Chlamydiales. A novel 1,393-bp 16S chlamydial rRNA sequence was amplified from gill DNA extracted from fish in all cohorts over a 3-year period that corresponded to the 16S rRNA sequence amplified directly from laser-dissected cysts. This sequence was only 87% similar to the reported "Candidatus Piscichlamydia salmonis" (AY462244) from Atlantic salmon and Arctic charr. Phylogenetic analysis of this sequence against 35 Chlamydia and Chlamydia-like bacteria revealed that this novel bacterium belongs to an undescribed family lineage in the order Chlamydiales. Based on these observations, we propose this bacterium of yellowtail kingfish be known as "Candidatus Parilichlamydia carangidicola" and that the new family be known as "Candidatus Parilichlamydiaceae."
Resumo:
A wrap method adaptation combined with AutoCAD2005 and Scion Image for Windows were used to determine the surface area of a fish. Compared with the corresponding r(2) and F of many models, the most accurate formula: S = 752.15W(0.675) (r(2) = 0.999, F = 18362.94, P < 0.0001) for estimating the surface area of common carp was obtained. Similarly, the fin formula: S = 1834.12W(0.708) (r(2) = 0.992, F = 2690.47, P < 0.0001) was also obtained for the same purpose. It was proven that these two formulae gave good estimates of surface and fin areas of four strains of common carp: Yellow-river carp, fancy carp, mirror carp and Xingguo red carp.
Resumo:
We present the first study comparing epitheliocystis in a wild and farmed salmonid in Europe. Sampling three tributaries to the Lake Geneva, including one from headwaters to river mouth, revealed an unequal distribution of epitheliocystis in brown trout (Salmo trutta). When evaluated histologically and comparing sites grouped as wild versus farm, the probability of finding infected trout is higher on farms. In contrast, the infection intensities, as estimated by the number of cysts per gill arch, were higher on average and showed maximum values in the wild trout. Sequence analysis showed the most common epitheliocystis agents were Candidatus Piscichlamydia salmonis, all clustering into a single clade, whereas Candidatus Clavichlamydia salmonicola sequences cluster in two closely related sub-species, of which one was mostly found in farmed fish and the other exclusively in wild brown trout, indicating that farms are unlikely to be the source of infections in wild trout. A detailed morphological analysis of cysts using transmission electron microscopy revealed unique features illustrating the wide divergence existing between Ca. P. salmonis and Ca. C. salmonicola within the phylum Chlamydiae
Resumo:
Sequences of small-subunit rRNA genes were determined for Dermocystidium percae and a new Dermocystidium species established as D. fennicum sp. n. from perch in Finland. On the basis of alignment and phylogenetic analysis both species were placed in the Dermocystidium-Rhinosporidium clade within Ichthyosporea, D. fennicum as a specific sister taxon to D. salmonis, and D. percae in a clade different from D. fennicum. The ultrastructures of both species well agree with the characteristics approved within Ichthyosporea: walled spores produce uniflagellate zoospores lacking a collar or cortical alveoli. The two Dermocystidium species resemble Rhinosporidium seeberi (as described by light microscope), a member of the nearest relative genus, but differ in that in R. seeberi plasmodia have thousands of nuclei discernible, endospores are discharged through a pore in the wall of the sporangium, and zoospores have not been revealed. The plasmodial stages of both Dermocystidium species have a most unusual behaviour of nuclei, although we do not actually know how the nuclei transform during the development. Early stages have an ordinary nucleus with double, fenestrated envelope. In middle-aged plasmodia ordinary nuclei seem to be totally absent or are only seldom discernible until prior to sporogony, when rather numerous nuclei again reappear. Meanwhile single-membrane vacuoles with coarsely granular content, or complicated membranous systems were discernible. Ordinary nuclei may be re-formed within these vacuoles or systems. In D. percae small canaliculi and in D. fennicum minute vesicles may aid the nucleus-cytoplasm interchange of matter before formation of double-membrane-enveloped nuclei. Dermocystidium represents a unique case when a stage of the life cycle of an eukaryote lacks a typical nucleus.