979 resultados para Salinity tolerence
Resumo:
The present study was undertaken with a view to understanding some aspects of the morphology, bionomics and physiology of the sea anemone A.nigrescens. This species was selected for the study since it is abundantly available along the coast throughout the year and can successfully reared in the laboratory without much effort. The present study deals with the following aspects of A.nigrescens. description of the species, habitat, food and feeding, digestion, studies on salinity tolerance, studies on oxygen consumption, studies on tolerance to desiccation, asexual reproduction and regeneration.
Resumo:
The present work comprises studies on the salinity tolerance and respiratory metabolism of a mood-boring sphaeromid, Sphaeroma annandalei, Stabbing and two free living,foulers of the family Cirolanidae, Cirolana fluviatilis Stabbing and C. uilleyi Stabbing. Except for the systematic accounts and general observations by Pillai (1961) and the preliminary studies on the salinity tolerance and respiration of C. fluviatilis by Nagabhushanam and Gopalakrishnamurthy (1965, 1965a) very little is known about these isopods From Indian waters. Studies by John (1968) on the habits, structure, and development of Sphaeroma terebrans and by Cheriyan (1973) on the eoéphysiology of the same are the recent major contributions on this interesting group of animals. 5. annandalei is closely related to S. terebrans and has been reported to occur on timber along with the latter (Pillai, 1951). s. gggandalei is a serious pest attacking wood along the Kerala coast, but detailed works on this species have not been undertaken so Far
Resumo:
The tolerance to the combined effects of temperature and salinity was investigated in the interstitial isopod Coxicerberus ramosae (Albuquerque, 1978), a species of intertidal zone of sandy beaches in Rio de Janeiro, Brazil. The animals were collected on Praia Vermelha Beach. The experiments lasted 24 h and nine salinities and seven temperatures were used for a total of 63 combinations. Thirty animals were tested in each combination. The species showed high survival in most of the combinations. The temperature of 35 ºC was lethal and at 5 ºC, the animals tolerated only a narrow range of salinities. The statistical analyses showed that the effects of temperature and salinity were significant on the survival, which confirmed the euryhalinity and eurythermy of this species.
Resumo:
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, Sao Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of. (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmol(c) kg(-1)), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L(-1)) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Although the effect of salinity on plant growth has been the focus of a substantive research effort, much of this research has failed to adequately separate the various growth limiting aspects of salinity; thus the results are confounded by multiple factors. Eight perennial grass species were grown in a sand culture system dominated by NaCl (electrical conductivities (ECs) between 1.4 and 38 dS m 1), with sufficient Ca added to each treatment to ensure that Na-induced Ca deficiency did not reduce growth. Of the eight perennial grass species examined, Chloris gayana cv. Pioneer (Rhodes grass) was the most salt tolerant species, whilst in comparison, Chrysopogon zizanioides cv. Monto (vetiver) was of only moderate tolerance. However, observed salinity tolerances tended to be lower than those expected from published values based on the threshold salinity model (bent stick model). This discrepancy may be due in part to differences in the evapotranspirational demand between studies; an increase in demand accelerating the accumulation of Na in the shoots and hence decreasing apparent salinity tolerance. It was also observed that the use of a non-saline growth period to allow seed germination and establishment results in the overestimation of vegetative salinity tolerance if not taken into consideration. This is particularly true for species of low salt tolerance due to their comparatively rapid growth in the non-saline medium compared to that at full salinity.
Resumo:
The cloacal complex of Crocodylus porosus is composed of three chambers (proctodaeum, urodaeum, and coprodaeum) separated by tight, muscular sphincters. The proctodaeum is proximal to the cloacal vent and houses the genitalia. The urodaeum is the largest chamber, is capable of storing large quantities of urine, and is lined with an epithelium with the capacity for transepithelial water and ion exchange. The coprodaeum, the most orad cloacal chamber, is a small, only marginally expandable chamber that has an epithelium composed almost entirely of mucus-secreting cells. The coprodaeum and lower intestine are reported to be the site(s) for urine modification in birds and bladderless lizards. A radiographic trace of urine storage in C. porosus kept for 2 months under hyperosmotic conditions showed no signs of retrograde movement of urine into the coprodaeum or rectum. Instead, urine was stored in the urodaeum of C. porosus. Examination of the mucosal surface of the urodaeum by SEM showed a plastic response to environmental salinity, with a possible increase in surface area in animals kept in hyperosmotic water compared with animals from fresh water. We propose the urodaeum as the primary site for postrenal modification of urine in C, porosus. (C) 2000 Wiley-Liss, Inc.
Resumo:
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10 days to salinities up to 21%.. Specific activity was highest in fresh water (26.5 +/- 2.1 U mg(-1)), decreasing in 5 parts per thousand to 21 parts per thousand, attaining 3-fold less at 15 parts per thousand. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10 parts per thousand, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21%., maximum specific activity decreased 2.5- to 4-fold within 1 to 24 h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24 h and 2.4-fold after 1 h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1 h, remaining constant up to 120 h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 parts per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH4+, discussed regarding NH4+ excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7 +/- 16.7 nmol Pi min(-1) mg(-1) and K(0.5) = 174.2 +/- 9.8 mmol L(-1) obeying cooperative kinetics (n(H) = 1.2). Stimulation by sodium (V = 308.9 +/- 15.7 nmol Pi min(-1) mg(-1), K(0.5) = 7.8 +/- 0.4 mmol L(-1)), magnesium (299.2 +/- 14.1 nmol Pi min(-1) mg(-1), K(0.5) = 767.3 +/- 36.1 mmol L(-1)), potassium (300.6 +/- 153 nmol Pi min(-1) mg(-1), K(0.5) = 1.6 +/- 0.08 mmol L(-1)) and ammonium (V = 345.1 +/- 19.0 nmol Pi min(-1) mg(-1), K(0.5) = 6.0 +/- 0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(1) = 45.1 +/- 2.5 mu mol L(-1), although affinity for the inhibitor increased (K(1) = 22.7 +/- 1.1 mu mol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.
Resumo:
ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1) and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206). Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base), number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.
Joint effects of salinity and the antidepressant sertraline on the estuarine decapod Carcinus maenas
Resumo:
Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability,experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production,anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations.
Resumo:
The present work deal t wi th an experiment under field conditions and a laboratory test of soil incubation the objectives were as follows: a. to study effects on soybean grain product ion and leaf composition of increasing doses of potassium chloride applied into the soil through two methods of distribution; b. to observe chemical modifications in the soils incubated with increasing doses of potassium chloride; and, c. to correlate field effects with chemical alterations observed in the incubation test, The field experiment was carried out in a Red Latosol (Haplustox) with soybean cultivar UFV - 1. Potassium chloride was distributed through two methods: banded (5 cm below and 5 cm aside of the seed line) and broadcasted and plowed-down. Doses used were: 0; 50; 100 and 200 kg/ha of K2O. Foliar samples were taken at flowering stage. Incubation test were made in plastic bags with 2 kg of air dried fine soil, taken from the arable layer of the field experiment, with the following doses of KC1 p,a. : 0; 50; 100; 200; 400; 800; 1,600; 3.200; 6,400 and 12,800 kg/ha of K(2)0. In the conditions observed during the present work, results allowed the following conclusions: A response by soybean grain production for doses of potassium chloride, applied in both ways, banded or broadcasted, was not observed. Leaf analysis did not show treatment influence over the leaf contents for N, P, K, Ca, Mg, and CI, Potassium chloride salinity effects in both methods of distribution for all the tested closes were not observed.
Resumo:
Metamysidopsis atlantica elongata (Bascescu, 1968) is a common mysid in the surf zone of sandy beaches from the state of Rio Grande do Sul, Brazil, where it is frequently recorded forming dense aggregations. Trough laboratory trials, behavioral responses to salinity (10, 20, 25, 28, 30, 40 e 45), temperature (10, 15, 20, 30±1ºC) and light (yes/no) were tested using adult males, adult females and juveniles. Although there was no response to temperature, the species showed clear response to salinity and light. In the presence of light, organisms remained in the bottom of the aquaria, but moved to surface when bottom salinities were increased. In the absence of light, adults moved to the surface. However, juveniles moved down to or remained on the bottom, maybe as a response to avoid adult predation.