999 resultados para Salinity of irrigation water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increasing water scarcity, accelerating industrialization and urbanization, efficiency of irrigation water use in Northern China needs urgent improvement. Based on a sample of 347 wheat growers in the Guanzhong Plain, this paper simultaneously estimates a production function, and its corresponding first-order conditions for cost minimization, to analyze efficiency of irrigation water use. The main findings are that average technical, allocative, and overall economic efficiency are 0.35, 0.86 and 0.80, respectively. In a second stage analysis, we find that farmers’ perception of water scarcity, water price and irrigation infrastructure increase irrigation water allocative efficiency, while land fragmentation decreases it. We also show that farmers’ income loss due to higher water prices can be offset by increasing irrigation water use efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we compare conceptualising single factor technical and allocative efficiency as indicators of a single latent variable, or as separate observed variables. In the former case, the impacts on both efficiency types are analysed by means of structural equation modeling (SEM), in the latter by seemingly unrelated regression (SUR). We compare estimation results of the two approaches based on a dataset on single factor irrigation water use efficiency obtained from a survey of 360 farmers in the Guanzhong Plain, China. The main methodological findings are that SEM allows identification of the most important dimension of irrigation water efficiency (technical efficiency) via comparison of their factor scores and reliability. Moreover, it reduces multicollinearity and attenuation bias. It thus is preferable to SUR. The SEM estimates show that perception of water scarcity is the most important positive determinant of both types of efficiency, followed by irrigation infrastructure, income and water price. Furthermore, there is a strong negative reverse effect from efficiency on perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to assess the bacteriological quality of water used in the irrigation of vegetable gardens in the municipalities of Araraquara, Boa Esperança do Sul and Ibitinga, São Paulo, Brazil. A total of 80 samples of water used in the irrigation of 40 vegetable gardens were analyzed, two samples coming from each vegetable garden. They were collected at the same site in different months, which resulted in two sample collection groups. The most probable number (MPN/100mL) of total coliforms, thermotolerant coliforms and enterococci was identifi ed by means of the multiple tube technique. The analysis of the fi rst group samples showed quantities of thermotolerant coliforms above the amount allowed by current law for irrigation water (CONAMA Resolution n. 357) in nine cases. The owners of those vegetable gardens were then instructed in water disinfection procedures. After the analysis of the second group samples, it was noticed that only one sample did not meet the quality standards, and it was collected at a site where no disinfection procedure had been carried out. According to the results, 77.5% of the vegetable gardens were using water whose samples meet the quality standards. After the owners were instructed with regard to disinfection procedures, that number changed to 97.5%, which confi rms the importance of controlling and supervising irrigation water quality

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supersedes the booklet "Measurement of Irrigation Water."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Issued July 1963."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian cotton (Gossypium hirsutum L.) is predominantly grown on heavy clay soils (Vertosols). Cotton grown on Vertosols often experiences episodes of low oxygen concentration in the root-zone, particularly after irrigation events. In subsurface drip-irrigation (SDI), cotton receives frequent irrigation and sustained wetting fronts are developed in the rhizosphere. This can lead to poor soil diffusion of oxygen, causing temporal and spatial hypoxia. As cotton is sensitive to waterlogging, exposure to this condition can result in a significant yield penalty. Use of aerated water for drip irrigation (‘oxygation’) can ameliorate hypoxia in the wetting front and, therefore, overcome the negative effects of poor soil aeration. The efficacy of oxygation, delivered via SDI to broadacre cotton, was evaluated over seven seasons (2005–06 to 2012–13). Oxygation of irrigation water by Mazzei air-injector produced significantly (P < 0.001) higher yields (200.3 v. 182.7 g m–2) and water-use efficiencies. Averaged over seven years, the yield and gross production water-use index of oxygated cotton exceeded that of the control by 10% and 7%, respectively. The improvements in yields and water-use efficiency in response to oxygation could be ascribed to greater root development and increased light interception by the crop canopies, contributing to enhanced crop physiological performance by ameliorating exposure to hypoxia. Oxygation of SDI contributed to improvements in both yields and water-use efficiency, which may contribute to greater economic feasibility of SDI for broadacre cotton production in Vertosols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.