923 resultados para Salinity Variations
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
Major controls on river salinity (total dissolved solids) in the western United States are climate, geology, and human activity. Climate, in general, influences soil-river salinity via salt-balance variations. When climate becomes wetter, river discharge increases and soil-river salinity decreases; when climate becomes drier river discharge decreases and soil-river salinity increases. This study characterizes the river salinity response to discharge using statistical-dynamic methods. An exploratory analysis of river salinity, using early 1900s water quality surveys in the western United States, shows much river salinity variability is in response to storm and annual discharge. Presumably this is because river discharge is largely supported by surface flow.
Resumo:
This note presents a method of distinguishing the source of freshwater that causes reductions in salinity in the coastal environment of South Florida. This technique, which uses the 18O and D of the water, allows for differentiation of the freshwater derived from precipitation as opposed to runoff, because surface waters in the Everglades have been highly evaporated and therefore have elevated 18O and dD values relative to precipitation. A time series of monthly 18O and D values of surface waters, collected from stations in Florida Bay between 1993 and 1999, has shown that, during this time, the major source of freshwaters causing depressions in the salinity in the western portion of Florida Bay was derived from precipitation rather than from the runoff of water from the Everglades. In the eastern portion of Florida Bay, close to the boundary between peninsular Florida and the Bay, the proportion of freshwater derived from precipitation drops steadily, reaching <10%. This method not only allows differentiation between the sources of freshwater but can, in a temporal sense, ascertain the effectiveness of water management practices on the salinity of the estuarine ecosystems of South Florida.
Resumo:
The effects of salinity variations on the survival of Martesia striata from Cochin harbour are presented. It is observed that at least a few of the animals survive the low saline conditions during monsoon. Laboratory experiments showed the lethal salinity as 6‰ when animals acclimatised in 34‰ were subjected to abrupt changes in salinity. But acclimatisation to 17‰ salinity showed a downward shift in the lethal salinity to 4‰. The present observations indicate that M. striata is euryhaline arid the extent of tolerance to lower salinities depends on the degree of acclimatisation.
Resumo:
From the distribution of oceanographic data (temperature and salinity) in both Arabian Gulf and Gulf of Oman, the steric components (thermal, haline and steric heights) are calculated for the upper 50m layer during different seasons. The analysis reveals relevant evidence, that temperature variations (thermal component) play a role in the fluctuations of sea level within the investigated area. The salinity variations (haline component) is only significant near the entrance. The sea level variations due to density (steric component) is low during winter and spring and high during summer and autumn. The steric height is always lower in the northern and central regions of Arabian Gulf and higher in eastern region of Arabian Gulf and in the Gulf of Oman, i.e. the surface water must flow from the Gulf of Oman to the Arabian Gulf. The steric sea level gradient around the Strait of Hormuz are 0.04 cm/km in winter, 0.04 cm/km in spring, and 0.025 cm/km in summer and 0.014 cm/km in autumn.
Resumo:
Abiotic factors, such as variations on salinity, exert influence on the animal distribution in the intertidal zone, including zoanthids. This study evaluated the osmotic, morphological and ethological effects of salinity variations on tropical zoanthid Zoanthus sociatus. In order to analyze the hypothesis of osmotic conformation, the zoanthid was submitted to salinity stress. To estimate the osmotic capabilities of the species studied, specimens collected in beach rocks were taken alive to the laboratory and maintained in water collected from the site. The osmoregulatory ability of Z. sociatus was determined by measuring the hemolymph osmolality under various salinity conditions and comparing it to the medium osmolality. Zoanthid Z. sociatus is able to present osmotic conformation in hemolymph salinity in a wide range of external salinity values. The bleaching frequency was high in low salinities and the mortality rate was high after two days of experiment. This experiment shows for the first time the importance of osmotic conformation in a tropical zoanthid and discusses the role of low salinity as a limiting factor for survival and distribution of these important animals in tropical coastal reefs.
Resumo:
Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs.
Resumo:
On tables 1 to 12, daily beach surface temperatures are presented. These temperatures are also ploted on figures 2 to 5 in daily values and in 7, 15, 30 days means. Salinity variations are less important than these of temperature (Fig. 6, 7). It follows that during upwelling period, variations of dynamic height anomaly are closely correlated with temperature (Fig. 6 and 8).
Resumo:
This thesis Entitled Haematological responses of penaeus monodon to environmental alterations and pathogenic invasion. Thesis concluded from the present study that stress is accompanied by alterations in haemolymph metabolic variables and immune responses that influences the susceptibility of P. monodon to infection. Acute salinity variations were proved to be a stress condition that enhances the susceptibility of P. monodon to V. harveyi and WSSV infection. Ambient Cu at 0.1 mg 1" and ambient Zn at 1.0 mg 1" proved immunostimulatory in increasing the immunocompetence of P. monodon to WSSV infection and higher concentrations of Cu and Zn proved immunosuppressive. Haemolymph total protein, total carbohydrates and total lipids showed the highest relation with immune responses. THC, PO, ACP and ALP that greatly correlated with the survival rate proposed as reliable biomarkers of health in P. monodon. The study highlights the need for proper management practices and regular health monitoring to be adopted to avoid mass mortality in shrimp culture ponds.
Resumo:
In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.
Resumo:
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.
Resumo:
Instrumental observations, palaeo-proxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviours mean that the precise nature and mechanisms of this variability are unclear. Here, we analyse an exceptionally large multi-model ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea co-vary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly-assimilation methods.
Resumo:
Este estudo teve o objetivo de conhecer a diversidade do microfitoplâncton, assim como sua variação nictemeral relacionada aos fatores ambientais do estuário do rio Curuçá (Curuçá - PA). Foram coletadas 12 amostras de fitoplâncton, ao longo de 24 horas, em 3 pontos de amostragem localizados próximo a uma fazenda de cultivo camarão marinho Litopnaeus vannamei em marés de sizígia, nos dias 14 e 15 de agosto/2004 e nos dias 24 e 25 de janeiro/2005. Foram determinadas a composição específica e densidade do microfitoplâncton (org.L-1) e realizadas análises de frequência de ocorrência, diversidade e equitabilidade, agrupamento e componentes principais (ACP). Os parâmetros físico-químicos não apresentaram uma variabilidade significativa entre os meses de coleta, porém observa-se uma importante influência do regime pluviométrico sobre a variação dos valores de salinidade, registrando os menores valores durante o mês de janeiro/05 e os maiores em agosto/04. Foram registrados 170 táxons pertencentes às Divisões Bacillariophyta (149), Dinophyta (16), Chlorophyta (3) e Cyanobacteria (2).O filo Bacillariophyta foi predominante em número de espécies, frequência de ocorrência e densidade (97.59%). Poucas espécies apresentam elevados índices de abundância, sendo que no mês de agosto a comunidade microfitoplanctônica é dominada por Bacteriastrum hyalinum, Bellerochea horologicalis, Chaetoceros curvisetus, Dimerograma dubium, Dytilium brigtwelli, Pseudo-nitzschia seriata e Skeletonema costatum. No mês de janeiro predominam Chaetoceros pseudocrinitus, Chaetoceros curvisetus e Skeletonema costatum. Houve o predomínio de espécies marinhas planctônicas neríticas, marinha planctônica nerito-oceânica, e marinha-planctônica oceânica. A diversidade específica oscilou de 0.7591 bits.org-1 e 1.3314 bits. org-1, caracterizada, de um modo geral, por uma diversidade variando de muito baixa a baixa, apresentando uma estrutura pouco diversificada. A variação dos parâmetros físico-químicos e da densidade das espécies foi o fator determinante no agrupamento das amostras, formando-se dois grandes grupos, o primeiro composto por amostras do mês de agosto e o segundo grupo composto por amostras do mês de janeiro. A análise de componentes principais indicou que, apesar de os parâmetros físico-químicos apresentarem baixa variabilidade espacial e entre os meses de coleta, a variação do índice de pluviosidade e da salinidade foi muito importante na variação da densidade de grande parte das espécies, provocando um aumento da densidade fitoplanctônica no mês de janeiro.