954 resultados para Saliency map
Resumo:
This paper proposes a novel approach to video deblocking which performs perceptually adaptive bilateral filtering by considering color, intensity, and motion features in a holistic manner. The method is based on bilateral filter which is an effective smoothing filter that preserves edges. The bilateral filter parameters are adaptive and avoid over-blurring of texture regions and at the same time eliminate blocking artefacts in the smooth region and areas of slow motion content. This is achieved by using a saliency map to control the strength of the filter for each individual point in the image based on its perceptual importance. The experimental results demonstrate that the proposed algorithm is effective in deblocking highly compressed video sequences and to avoid over-blurring of edges and textures in salient regions of image.
Resumo:
Certain salient structures in images attract our immediate attention without requiring a systematic scan. We present a method for computing saliency by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map," a representation of the image emphasizing salient locations. The main properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations, and (iii) as a by-product of the computations, contours are smoothed and gaps are filled in.
Resumo:
Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.
Resumo:
The increasing popularity of video consumption from mobile devices requires an effective video coding strategy. To overcome diverse communication networks, video services often need to maintain sustainable quality when the available bandwidth is limited. One of the strategy for a visually-optimised video adaptation is by implementing a region-of-interest (ROI) based scalability, whereby important regions can be encoded at a higher quality while maintaining sufficient quality for the rest of the frame. The result is an improved perceived quality at the same bit rate as normal encoding, which is particularly obvious at the range of lower bit rate. However, because of the difficulties of predicting region-of-interest (ROI) accurately, there is a limited research and development of ROI-based video coding for general videos. In this paper, the phase spectrum quaternion of Fourier Transform (PQFT) method is adopted to determine the ROI. To improve the results of ROI detection, the saliency map from the PQFT is augmented with maps created from high level knowledge of factors that are known to attract human attention. Hence, maps that locate faces and emphasise the centre of the screen are used in combination with the saliency map to determine the ROI. The contribution of this paper lies on the automatic ROI detection technique for coding a low bit rate videos which include the ROI prioritisation technique to give different level of encoding qualities for multiple ROIs, and the evaluation of the proposed automatic ROI detection that is shown to have a close performance to human ROI, based on the eye fixation data.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.
Resumo:
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.
Resumo:
A biological disparity energy model can estimate local depth information by using a population of V1 complex cells. Instead of applying an analytical model which explicitly involves cell parameters like spatial frequency, orientation, binocular phase and position difference, we developed a model which only involves the cells’ responses, such that disparity can be extracted from a population code, using only a set of previously trained cells with random-dot stereograms of uniform disparity. Despite good results in smooth regions, the model needs complementary processing, notably at depth transitions. We therefore introduce a new model to extract disparity at keypoints such as edge junctions, line endings and points with large curvature. Responses of end-stopped cells serve to detect keypoints, and those of simple cells are used to detect orientations of their underlying line and edge structures. Annotated keypoints are then used in the leftright matching process, with a hierarchical, multi-scale tree structure and a saliency map to segregate disparity. By combining both models we can (re)define depth transitions and regions where the disparity energy model is less accurate.
Resumo:
Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.
Resumo:
The Brisbane Media Map is both an online resource and a tertiary-level authentic learning project. The Brisbane Media Map is an online database which provides a detailed overview of about 600 media industry organisations in Brisbane, Australia. In addition to providing contact details and synopses for each organisation’s profile, the Brisbane Media Map also includes supplementary information on current issues, trends, and individuals in the media and communication industry sectors. This resource is produced and updated annually by final-year undergraduate Media and Communication students. This article introduces the Brisbane Media Map, its functionality and systems design approach, as well as its alignment with key learning infrastructures. It examines authentic learning as the pedagogical framework underpinning the ongoing development work of the resource and highlights some synergies of this framework with participatory design principles. The Brisbane Media Map is a useful example of an authentic learning approach that successfully engages students of non-traditional and non-design areas of study in human-computer interaction, usability, and participatory design activities.