115 resultados para Saccade


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulator models that integrate incoming sensory information into motor plans provide a robust framework to understand decision making. However, their applicability to situations that demand a change of plan raises an interesting problem for the brain. This is because interruption of the current motor plan must occur by a competing motor plan, which is necessarily weaker in strength. To understand how changes of mind get expressed in behavior, we used a version of the double-step task called the redirect task, in which monkeys were trained to modify a saccade plan. We microstimulated the frontal eye fields during redirect behavior and systematically measured the deviation of the evoked saccade from the response field to causally track the changing saccade plan. Further, to identify the underlying mechanisms, eight different computational models of redirect behavior were assessed. It was observed that the model that included an independent, spatially specific inhibitory process, in addition to the two accumulators representing the preparatory processes of initial and final motor plans, best predicted the performance and the pattern of saccade deviation profile in the task. Such an inhibitory process suppressed the preparation of the initial motor plan, allowing the final motor plan to proceed unhindered. Thus, changes of mind are consistent with the notion of a spatially specific, inhibitory process that inhibits the current inappropriate plan, allowing expression of the new plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bhutani N, Ray S, Murthy A. Is saccade averaging determined by visual processing or movement planning? J Neurophysiol 108: 3161-3171, 2012. First published September 26, 2012; doi:10.1152/jn.00344.2012.-Saccadic averaging that causes subjects' gaze to land between the location of two targets when faced with simultaneously or sequentially presented stimuli has been often used as a probe to investigate the nature of computations that transform sensory representations into an oculomotor plan. Since saccadic movements involve at least two processing stages-a visual stage that selects a target and a movement stage that prepares the response-saccade averaging can either occur due to interference in visual processing or movement planning. By having human subjects perform two versions of a saccadic double-step task, in which the stimuli remained the same, but different instructions were provided (REDIRECT gaze to the later-appearing target vs. FOLLOW the sequence of targets in their order of appearance), we tested two alternative hypotheses. If saccade averaging were due to visual processing alone, the pattern of saccade averaging is expected to remain the same across task conditions. However, whereas subjects produced averaged saccades between two targets in the FOLLOW condition, they produced hypometric saccades in the direction of the initial target in the REDIRECT condition, suggesting that the interaction between competing movement plans produces saccade averaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells in the lateral intraparietal cortex (LIP) of rhesus macaques respond vigorously and in spatially-tuned fashion to briefly memorized visual stimuli. Responses to stimulus presentation, memory maintenance, and task completion are seen, in varying combination from neuron to neuron. To help elucidate this functional segmentation a new system for simultaneous recording from multiple neighboring neurons was developed. The two parts of this dissertation discuss the technical achievements and scientific discoveries, respectively.

Technology. Simultanous recordings from multiple neighboring neurons were made with four-wire bundle electrodes, or tetrodes, which were adapted to the awake behaving primate preparation. Signals from these electrodes were partitionable into a background process with a 1/f-like spectrum and foreground spiking activity spanning 300-6000 Hz. Continuous voltage recordings were sorted into spike trains using a state-of-the-art clustering algorithm, producing a mean of 3 cells per site. The algorithm classified 96% of spikes correctly when tetrode recordings were confirmed with simultaneous intracellular signals. Recording locations were verified with a new technique that creates electrolytic lesions visible in magnetic resonance imaging, eliminating the need for histological processing. In anticipation of future multi-tetrode work, the chronic chamber microdrive, a device for long-term tetrode delivery, was developed.

Science. Simultaneously recorded neighboring LIP neurons were found to have similar preferred targets in the memory saccade paradigm, but dissimilar peristimulus time histograms, PSTH). A majority of neighboring cell pairs had a difference in preferred directions of under 45° while the trial time of maximal response showed a broader distribution, suggesting homogeneity of tuning with het erogeneity of function. A continuum of response characteristics was present, rather than a set of specific response types; however, a mapping experiment suggests this may be because a given cell's PSTH changes shape as well as amplitude through the response field. Spike train autocovariance was tuned over target and changed through trial epoch, suggesting different mechanisms during memory versus background periods. Mean frequency-domain spike-to-spike coherence was concentrated below 50 Hz with a significant maximum of 0.08; mean time-domain coherence had a narrow peak in the range ±10 ms with a significant maximum of 0.03. Time-domain coherence was found to be untuned for short lags (10 ms), but significantly tuned at larger lags (50 ms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Both target and distractor stimuli activate populations of neurons in topographic oculomotor maps such as the superior colliculus. Local inhibitory interconnections between these populations ensure only one saccade target is selected. Suppressing saccades to distractors may additionally involve inhibiting corresponding map regions to bias the local competition. Behavioral evidence of these inhibitory processes comes from the effects of distractors on oculomotor and manual trajectories. Individual saccades may initially deviate either toward or away from a distractor, but the source of this variability has not been investigated. Here we investigate the relation between distractor-related deviation of trajectory and saccade latency. Targets were presented with, or without, distractors, and the deviation of saccade trajectories arising from the presence of distractors was measured. A fixation gap paradigm was used to manipulate latency independently of the influence of competing distractors. Shorter- latency saccades deviated toward distractors and longer-latency saccades deviated away from distractors. The transition between deviation toward or away from distractors occurred at a saccade latency of around 200 ms. This shows that the time course of the inhibitory process involved in distractor related suppression is relatively slow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal effect of distractor related inhibition on stimulus elicited (reflexive) and goal driven (voluntary) saccades, was examined using saccade trajectory deviations as a measure. Subjects made voluntary and reflexive saccades to a target location on the vertical midline, while the distance of a distractor from the target was systematically manipulated. The trajectory curvature of both voluntary and reflexive saccades was found to be subject to individual differences. Saccade curvature was found to decrease monotonically with increasing distractor distance from target for some subjects while for others no reduction in curvature or even an increase was found. These results could not be explained by latency differences or landing position effects. The different patterns of distractor effects on saccade trajectories suggest the additional influence of a non-spatial inhibitory mechanism. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the dependency of the saccadic remote distractor effect (RDE) on the spatial frequency content of target and distractor Gabor patches. A robust RDE was obtained with low-medium spatial frequency distractors, regardless of the spatial frequency of the tat-get. High spatial frequency distractors interfered to a similar extent when the target was of the same spatial frequency. We developed a quantitative model based on lateral inhibition within an oculomotor decision unit. This lateral inhibition mechanism cannot account for the interaction observed between target and distractor spatial frequency, pointing to the existence of channel interactions at an earlier level. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccadic eye-movements to a visual target are less accurate if there are distracters close to its location (local distracters). The addition of more distracters, remote from the target location (remote distracters), invokes an involuntary increase in the response latency of the saccade and attenuates the effect of local distracters on accuracy. This may be due to the target and distracters directly competing (direct route) or to the remote distracters acting to impair the ability to disengage from fixation (indirect route). To distinguish between these we examined the development of saccade competition by recording saccade latency and accuracy responses made to a target and local distracter compared with those made with an addition of a remote distracter. The direct route would predict that the remote distracter impacts on the developing competition between target and local distracter, while the indirect route would predict no change as the accuracy benefit here derives from accessing the same competitive process but at a later stage. We found that the presence of the remote distracter did not change the pattern of accuracy improvement. This suggests that the remote distracter was acting along an indirect route that inhibits disengagement from fixation, slows saccade initiation, and enables more accurate saccades to be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether attention shifts and eye movement preparation are mediated by shared control mechanisms, as claimed by the premotor theory of attention. ERPs were recorded in three tasks where directional cues presented at the beginning of each trial instructed participants to direct their attention to the cued side without eye movements (Covert task), to prepare an eye movement in the cued direction without attention shifts (Saccade task) or both (Combined task). A peripheral visual Go/Nogo stimulus that was presented 800 ms after cue onset signalled whether responses had to be executed or withheld. Lateralised ERP components triggered during the cue–target interval, which are assumed to reflect preparatory control mechanisms that mediate attentional orienting, were very similar across tasks. They were also present in the Saccade task, which was designed to discourage any concomitant covert attention shifts. These results support the hypothesis that saccade preparation and attentional orienting are implemented by common control structures. There were however systematic differences in the impact of eye movement programming and covert attention on ERPs triggered in response to visual stimuli at cued versus uncued locations. It is concluded that, although the preparatory processes underlying saccade programming and covert attentional orienting may be based on common mechanisms, they nevertheless differ in their spatially specific effects on visual information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote transient changes in the environment, such as the onset of visual distractors, impact on the exe- cution of target directed saccadic eye movements. Studies that have examined the latency of the saccade response have shown conflicting results. When there was an element of target selection, saccade latency increased as the distance between distractor and target increased. In contrast, when target selection is minimized by restricting the target to appear on one axis position, latency has been found to be slowest when the distractor is shown at fixation and reduces as it moves away from this position, rather than from the target. Here we report four experiments examining saccade latency as target and distractor posi- tions are varied. We find support for both a dependence of saccade latency on distractor distance from target and from fixation: saccade latency was longer when distractor is shown close to fixation and even longer still when shown in an opposite location (180°) to the target. We suggest that this is due to inhib- itory interactions between the distractor, fixation and the target interfering with fixation disengagement and target selection.