933 resultados para SYNTHETIC LIPIDS
Resumo:
Articular cartilage is covered by a microscopic structure known as surface amorphous layer. This surface structure is often the first victim of attack during cartilage degeneration, thereby resulting in a gross impairment in cartilage function such as lubrication and load bearing. We hypothesize that incubation of degraded cartilage in solutions of different species of synthetic surface active phospholipids (saturated and unsaturated species) can remodel this lost surface structure. To test this hypothesis, the structural configuration of the surface of articular cartilage was studied and characterised with the lipid filled surface amorphous layer intact using the AFM. The results were then compared with those obtained following a systematic removal (delipidization) and replacement (relipidization) of this layer. Our results show that the unsaturated surfactant partially restored the lost surface amorphous layer while the saturated surfactant specie settled on the surface due to its poor solubility in aqueous solution.
Resumo:
This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.
Resumo:
Two types of cationic cholesteryl amphiphiles, one where the headgroup is attached to the steroid by an ester linkage and the second by an ether linkage, were synthesized. A third type of cholesteryl lipid bearing an oligoethylene glycol segment was also prepared. Each of these synthetic lipids generated vesicle-like aggregates with closed inner aqueous compartments from their aqueous suspensions. We examined their interaction with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes using fluorescence anisotropy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). When included in membranes, the synthetic cholesteryl lipids were found to quench the chain motion of the acyl chains of DPPC. This suggests that these cationic cholesteryl derivatives act as filler molecules despite modification at the headgroup level from the molecular structure of natural cholesterol. Careful analyses of DSC and fluorescence anisotropy data suggest that the nature of perturbation induced by each of these cationic cholesterol derivatives is dependent on the details of their molecular structure and provides significant information on the nature of interaction of these derivatives with phospholipid molecules. In general, amphiphiles that support structured water at the interfacial region tend to rigidify the fluid phase more than others. Importantly, these cholesteryl amphiphiles behave less like cholesterol in that their incorporation in DPPC not only abolishes the phase transition but also depresses the phase transition temperature.
Resumo:
Order parameter profiles extracted from the NMR spectra of model membranes are a valuable source of information about their structure and molecular motions. To al1alyze powder spectra the de-Pake-ing (numerical deconvolution) ~echnique can be used, but it assumes a random (spherical) dist.ribution of orientations in the sample. Multilamellar vesicles are known to deform and orient in the strong magnetic fields of NMR magnets, producing non-spherical orientation distributions. A recently developed technique for simultaneously extracting the anisotropies of the system as well as the orientation distributions is applied to the analysis of partially magnetically oriented 31p NMR spectra of phospholipids. A mixture of synthetic lipids, POPE and POPG, is analyzed to measure distortion of multilamellar vesicles in a magnetic field. In the analysis three models describing the shape of the distorted vesicles are examined. Ellipsoids of rotation with a semiaxis ratio of about 1.14 are found to provide a good approximation of the shape of the distorted vesicles. This is in reasonable agreement with published experimental work. All three models yield clearly non-spherical orientational distributions, as well as a precise measure of the anisotropy of the chemical shift. Noise in the experimental data prevented the analysis from concluding which of the three models is the best approximation. A discretization scheme for finding stability in the algorithm is outlined
Resumo:
Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CM C, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta= 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of p. aeruginosa viability (10(7) CFU/mL) at 1 or 2 mu g/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 mu g/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.
Resumo:
CD1 molecules are specialized in presenting lipids to T lymphocytes, but identification and isolation of CD1-restricted lipidspecific T cells has been hampered by the lack of reliable and sensitive techniques. We here report the construction of CD1d–glycolipid tetramers from fully denatured human CD1d molecules by using the technique of oxidative refolding chromatography. We demonstrate that chaperone- and foldase-assisted refolding of denatured CD1d molecules and β2-microglobulin in the presence of synthetic lipids is a rapid method for the generation of functional and specific CD1d tetramers, which unlike previously published protocols ensures isolation of CD1d tetramers loaded with a single lipid species. The use of human CD1d–α-galactosylceramide tetramers for ex vivo staining of peripheral blood lymphocytes and intrahepatic T cells from patients with viral liver cirrhosis allowed for the first time simultaneous analysis of frequency and specificity of natural killer T cells in human clinical samples. Application of this protocol to other members of the CD1 family will provide powerful tools to investigate lipid-specific T cell immune responses in health and in disease.
Resumo:
The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.
Resumo:
The aim of this study was to determine the effect of dietary quercetin supplementation on blood lipids and TNF-alpha levels according to the apoE genotype in apoE3 and apoE4 targeted gene replacement mice. In a two-factorial design female apoE3 and apoE4 mice were fed semi-synthetic diets without (controls) and with quercetin (2 mg/g diet) for 6 weeks. Feeding the quercetin-supplemented diets significantly increased plasma levels of quercetin and isorhamnetin both in apoE3 and apoE4 mice. There was no significant effect of apoE genotype on plasma quercetin levels. ApoE3 and apoE4 transgenic mice exhibited similar plasma levels of apoE and cholesterol which were not significantly affected by dietary quercetin supplementation. In mice receiving the basal diet without quercetin supplementation, levels of TNF-alpha in whole blood stimulated ex vivo with lipopolysaccharide were higher in apoE3 as compared to apoE4 transgenic mice. Dietary quercetin significantly lowered levels of TNF-alpha by 44% in apoE3 mice relative to apoE3 mice receiving the unsupplemented diets. In apoE4 mice a moderate (20%) but not significant decrease in TNF-alpha levels in response to the quercetin supplementation was evident. Following quercetin supplementation TNF-alpha levels were similar between apoE3 and apoE4 transgenic mice. Current findings indicate that apoE3 mice are more responsive to the TNF-alpha lowering properties of dietary quercetin supplementation as compared to apoE4 animals.
Resumo:
The local concentrations of chloride, Cl b, and bromide, Br b, in the interface of vesicles prepared with dioctadecyldimethylammonium chloride, DODAC, or bromide, DODAB, dipalmitoylphosphatidylcholine, DPPC, dimyristoylphosphatidylcholine, DMPC, and mixtures of DMPC, DPPC, and DODAC were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of vesicle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. The values of Cl b and Br b in DODAC and DODAB vesicles increase with vesicle size, in agreement with previous data showing that counterion dissociation decreases with vesicle size. Addition of tetramethylammonium chloride displaces bromide from the DODAB vesicular interface. The value for the selectivity constant for Br/Cl exchange at the DODAB vesicular interface obtained by chemical trapping was ∼2.0, well within values obtained for comparable amphiphiles. In vesicles of DPPC the values of Cl b were very sensitive to the nature of the cation and decreased in the order Ca 2+ > Mg 2+ > Li + > Na + > K + = Cs + = Rb + ≥ +. The effect of the cation becomes more important as temperature increases above the phase transition temperature, T m, of the lipid. The values of Cl b increased sigmoidally with the mol % of DODAC in vesicles prepared with DODAC/lipid mixtures. In sonicated vesicles prepared with DODAC and DMPC (or DPPC), the values of Cl b reach local concentrations measured for the pure amphiphile at 80 mol % DODAC. These results represent the first extensive study of local concentration of ions determined directly by chemical trapping in vesicles prepared with lipids, synthetic ampliiphiles, and their mixtures.
Resumo:
Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.
Resumo:
Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.
Resumo:
Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.
Resumo:
Coronary heart disease remains the leading cause of death in the United States and increased blood cholesterol level has been found to be a major risk factor with roots in childhood. Tracking of cholesterol, i.e., the tendency to maintain a particular cholesterol level relative to the rest of the population, and variability in blood lipid levels with increase in age have implications for cholesterol screening and assessment of lipid levels in children for possible prevention of further rise to prevent adulthood heart disease. In this study the pattern of change in plasma lipids, over time, and their tracking were investigated. Also, within-person variance and retest reliability defined as the square root of within-person variance for plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides and their relation to age, sex and body mass index among participants from age 8 to 18 years were investigated. ^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. We examined the relationship between repeated observations by Pearson's correlations. Age- and sex-specific quintiles were calculated and the probability of participants to remain in the uppermost quintile of their respective distribution was evaluated with life table methods. Plasma total cholesterol, HDL-C and LDL-C at baseline were strongly and significantly correlated with measurements at subsequent visits across the sex and age groups. Plasma triglyceride at baseline was also significantly correlated with subsequent measurements but less strongly than was the case for other plasma lipids. The probability to remain in the upper quintile was also high (60 to 70%) for plasma total cholesterol, HDL-C and LDL-C. ^ We used a mixed longitudinal, or synthetic cohort design with continuous observations from age 8 to 18 years to estimate within person variance of plasma total cholesterol, HDL-C, LDL-C and triglycerides. A total of 5809 measurements were available for both cholesterol and triglycerides. A multilevel linear model was used. Within-person variance among repeated measures over up to four years of follow-up was estimated for total cholesterol, HDL-C, LDL-C and triglycerides separately. The relationship of within-person and inter-individual variance with age, sex, and body mass index was evaluated. Likelihood ratio tests were conducted by calculating the deviation of −2log (likelihood) within the basic model and alternative models. The square root of within-person variance provided the retest reliability (within person standard deviation) for plasma total cholesterol, HDL-C, LDL-C and triglycerides. We found 13.6 percent retest reliability for plasma cholesterol, 6.1 percent for HDL-cholesterol, 11.9 percent for LDL-cholesterol and 32.4 percent for triglycerides. Retest reliability of plasma lipids was significantly related with age and body mass index. It increased with increase in body mass index and age. These findings have implications for screening guidelines, as participants in the uppermost quintile tended to maintain their status in each of the age groups during a four-year follow-up. The magnitude of within-person variability of plasma lipids influences the ability to classify children into risk categories recommended by the National Cholesterol Education Program. ^
Resumo:
Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.