641 resultados para SYNERGY
Resumo:
We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present a model of conglomeration motivated by technology synergies and strategic reductions in variable costs in the face of competitive pressures. The resulting firm integration is neither horizontal nor vertical but rather congeneric integration of firms in related industries. We endogenize the industrial conglomeration structure and examine the effects of competition between conglomerates, and between a conglomerate and independent firms. We show that there is an equilibrium synergy trap in which conglomerates are formed to exploit economies of scope, but resulting profits are lower than under the status quo. We also show that strategic firm integration can occur even in the presence of diseconomies of scope. The model helps to explain features of recent mergers and acquisitions experience.
Resumo:
The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.
Resumo:
There is growing interest in the association of radiotherapy and immunotherapy for the treatment of solid tumors. Here, we report an extremely effective combination of local irradiation (IR) and Shiga Toxin B (STxB)-based human papillomavirus (HPV) vaccination for the treatment of HPV-associated head and neck squamous cell carcinoma (HNSCC). The efficacy of the irradiation and vaccine association was tested using a model of HNSCC obtained by grafting TC-1/luciferase cells at a submucosal site of the inner lip of immunocompetent mice. Irradiation and the STxB-E7 vaccine acted synergistically with both single and fractionated irradiation schemes, resulting in complete tumor clearance in the majority of the treated mice. A dose threshold of 7.5 Gy was required to elicit the dramatic antitumor response. The combined treatment induced high levels of tumor-infiltrating, antigen-specific CD8(+) T cells, which were required to trigger the antitumor activity. Treatment with STxB-E7 and irradiation induced CD8(+) T-cell memory, which was sufficient to exert complete antitumor responses in both local recurrences and distant metastases. We also report for the first time that a combination therapy based on local irradiation and vaccination induces an increased pericyte coverage (as shown by αSMA and NG2 staining) and ICAM-1 expression on vessels. This was associated with enhanced intratumor vascular permeability that correlated with the antitumor response, suggesting that the combination therapy could also act through an increased accessibility for immune cells. The combination strategy proposed here offers a promising approach that could potentially be transferred into early-phase clinical trials.
Resumo:
Determining the appropriate level of integration is crucial to realizing value from acquisitions. Most prior research assumes that higher integration implies the removal of autonomy from target managers, which in turn undermines the functioning of the target firm if it entails unfamiliar elements for the acquirer. Using a survey of 86 acquisitions to obtain the richness of detail necessary to distinguish integration from autonomy, the authors argue and find that integration and autonomy are not the opposite ends of a single continuum. Certain conditions (e.g., when complementarity rather than similarity is the primary source of synergy) lead to high levels of both integration and autonomy. In addition, similarity negatively moderates the relationship between complementarity and autonomy when the target offers both synergy sources. In contrast, similarity does not moderate the link between complementarity and integration. The authors' findings advance scholarly understanding about the drivers of implementation strategy and in particular the different implementation strategies acquiring managers deploy when they attempt to leverage complementarities, similarities, or both.
Resumo:
We have shown that the peripheral and spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase-cGMP pathways play an important role in antinociception in the rat experimental formalin model. Our objective was to determine if there is synergism between peripheral (paw) and spinal HO-CO pathways in nociception. Rats were handled and adapted to the experimental environment for a few days before the formalin test, in which 50 µL of a 1% formalin was injected subcutaneously into the dorsal surface of the right hind paw. The animals were then observed for 1 h and the frequency of flinching behavior was taken to represent the nociceptive response. Thirty minutes before the test, rats were pretreated with intrathecal injections of the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is a substrate of the HO pathway. The paw treatments took place 20 min before the test. Low doses of ZnDPBG did not increase nociception, while a low heme-lysinate dose did not change flinching behavior after paw or spinal injections. Combined subactive spinal (50 nmol) and peripheral (40 nmol) low doses of ZnDPBG induced hypernociception (increase of 80% in the first and 25% in the second phase flinching), whereas combined spinal-peripheral heme-lysinate (50 and 30 nmol) led to second phase antinociception (40% reduction in flinching). These findings suggest a synergy between the peripheral and spinal HO-CO pathways. Local activation of the HO system probably regulates the nociception initiation in peripheral tissue and participates in buffering the emerging nociceptive signals at the peripheral and spinal sites of action. In short, an antinociceptive synergy exists between peripheral and spinal HO pathways, which may reduce the doses required and side effects.
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.
Resumo:
Studies of construction labour productivity have revealed that limited predictability and multi-agent social complexity make long-range planning of construction projects extremely inaccurate. Fire-fighting, a cultural feature of construction project management, social and structural diversity of involved permanent organizations, and structural temporality all contribute towards relational failures and frequent changes. The main purpose of this paper is therefore to demonstrate that appropriate construction planning may have a profound synergistic effect on structural integration of a project organization. Using the general systems theory perspective it is further a specific objective to investigate and evaluate organizational effects of changes in planning and potentials for achieving continuous project-organizational synergy. The newly developed methodology recognises that planning should also represent a continuous, improvement-leading driving force throughout a project. The synergistic effect of the process planning membership duality fostered project-wide integration, eliminated internal boundaries, and created a pool of constantly upgrading knowledge. It maintained a creative environment that resulted in a number of process-related improvements from all parts of the organization. As a result labour productivity has seen increases of more than 30%, profits have risen from an average of 12% to more than 18%, and project durations have been reduced by several days.
Resumo:
Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidopsis of calcium influx and oxidative burst induced by non-saturating concentrations of bacterial MAMPs, used singly and in combination: flagellin peptide (flg22), elongation factor peptide (elf18), peptidoglycan (PGN) and component muropeptides, lipo-oligosaccharide (LOS) and core oligosaccharides. This revealed that some MAMPs have additive (e.g. flg22 with elf18) and even synergistic (flg22 and LOS) effects, whereas others mutually interfere (flg22 with OGA). OGA suppression of flg22-induced defences was not a result of the interference with the binding of flg22 to its receptor flagellin-sensitive 2 (FLS2). MAMPs induce different calcium influx signatures, but these are concentration dependent and unlikely to explain the differential induction of defence genes [pathogenesis-related gene 1 (PR1), plant defensin gene 1.2 (PDF1.2) and phenylalanine ammonia lyase gene 1 (PAL1)] by flg22, elf18 and OGA. The peptide MAMPs are potent elicitors at subnanomolar levels, whereas PGN and LOS at high concentrations induce low and late host responses. This difference might be a result of the restricted access by plant cell walls of MAMPs to their putative cellular receptors. flg22 is restricted by ionic effects, yet rapidly permeates a cell wall matrix, whereas LOS, which forms supramolecular aggregates, is severely constrained, presumably by molecular sieving. Thus, MAMPs can interact with each other, whether directly or indirectly, and with the host wall matrix. These phenomena, which have not been considered in detail previously, are likely to influence the speed, magnitude, versatility and composition of plant defences.