949 resultados para SYNERGISTIC SOLVENT-EXTRACTION
Resumo:
The thesis entitled “Synergistic solvent extraction of Thorium(IV) and Uranium(VI) with β-diketones in presence of oxo-donors” embodies the results of the investigations carried out on the extraction of thorium(IV) an uranium(VI) with heterocyclic β-diketones in the presence and absence of various macrocyclic ligands and neutral organophosphorus extractants. The objective of this work is to generate the knowledge base to achieve better selectivity between thorium(IV) and uranium(VI) by understanding the interactions of crown ethers or neutral organophosphorus extractants with metal-heterocyclic β-diketonate complexes. Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones, namely,1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone (HPMFBP) and 1-phenyl-3-methyl-4-(4-toluoyl)-5-pyrazolone (HPMTP) were synthesized and characterized by elemental analysis, IR and H NMR spectral data. The synthesized ligands have been utilized for the extraction of thorium(IV) and uranium(VI) from nitric acid solutions in the presence and absence of various crown ethers. Thorium(IV) and uranium(VI) complexes with HPMPP(1-Phenyl-3-methyl-4-pivaloyl-5-pyrazolone) and neutral organophosphorus extractants were synthesized and characterized by IR and P NMR spectral data to further understand the interactions of neutral organophosphorus extractants with metal-chelates. Solid complexes of thorium(IV) and uranium(VI) with para-substituted 4-aroyl-5-isoxazolones and crown ethers were isolated and characterized by various spectroscopic techniques to further clarify the nature of the extracted complexes.
Resumo:
The separation by solvent extraction of Am-241(III) from Eu-152(III), in 1 M NaNO3 weakly acidic (pH 4) aqueous solutions, into dilute (ca. 10(-2) M) solutions of triazinylbipyridine derivatives (diethylhemi-BTP or di(benzyloxyphenyl) hemi-BTP) and chlorinated cobalt dicarbollide (COSAN) in 1-octanol or nitrobenzene has been studied. The N-tridentate heterocyclic ligands, which are selective for Am(III) over Eu(III), secured efficient separation of the two metal ions, while COSAN, strongly hydrophobic and fully dissociated in polar diluents, enhanced the extraction of the metal ions by ion-pair formation. Molecular interactions between the two co-extractants, observed at higher concentrations, led to the precipitation of their 1: 1 molecular adduct. In spite of that, efficient separations of Am and Eu ions were attained, with high separation factors, SFAm/Eu of 40 and even 60, provided the concentration of hemi-BTP was significantly greater than that of COSAN. Excess COSAN concentrations caused an antagonistic effect, decreasing both the distribution ratio of the metal ions and their separation factor.
Resumo:
The thesis entitled “ Investigations on the solvent extraction and luminescence of lanthanoids with mixtures of heterocyclic β-diketone S and various neutral oxo-donors” embodies the results of investigations carried out on the solvent extraction of trivalent lanthanoids with various heterocyclic β-diketones in the presence and absence of neutral oxo-donors and also on the luminescent studies of Eu3+-heterocyclic β-diketonate complexes with Lewis bases. The primary objective of the present work is to generate the knowledge base, especially to understand the interactions of lanthanoid-heterocyclic β-diketonates with various macrocyclic ligands such as crown ethers and neutral organophosphorus extractants , with a view to achieve better selectivity. The secondary objective of this thesis is to develop novel lanthanoid luminescent materials based on 3-phenyl-4-aroyl-5-isoxazolones and organophosphorus ligands, for use in electroluminescent devices. In the beginning it describes the need for the development of new mixed-ligand systems for the separation of lanthanoids and the development and importance of novel luminescent lanthanoid- β-diketonate complexes for display devices. The syntheses of various para substituted derivatives of 4-aroyl-5-isoxazolones and their characterization by various spectroscopic techniques are described. It also investigate the solvent extraction behaviour of trivalent lanthanoids with 4-aroyl-5-isoxazolones in the presence and absence of various crown ethers such as 18C6, DC18C6, DB18C6 and B18C6. Elemental analysis, IR and H NMR spectral studies are used to understand the interactions of crown ethers with 4-aroyl-5-isoxazolonate complexes of lanthanoids. The synergistic extraction of trivalent lanthanoids with sterically hindered 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various structurally related crown ethers are studied. The syntheses, characterization and photyphysical properties of Eu3+-4-aroyl-5-isoxazolonate complexes in the presence of Lewis bases like trictylphosphine oxide or triphenylphosphine oxide were studied.
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
An extraction-anodic adsorptive stripping voltammetric procedure using microwave-assisted solvent extraction and a gold ultramicroelectrode was developed for determining the pesticide ametryn in soil samples. The method is based on the use of acetonitrile as extraction solvent and on controlled adsorptive accumulation of the herbicide at the potential of 0.50 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 3.3). Soil sample extracts were analysed directly after drying and redissolution with the supporting electrolyte but without other pre-treatment. The limit of detection obtained for a 10 s collection time was 0.021 µg g-1. Recovery experiments for the global procedure, at the 0.500 µg g-1 level, gave satisfactory mean and standard deviation results which were comparable to those obtained by HPLC with UV detection.
Resumo:
The main objective of this research is to exploit the possibility of using an ex situ solvent extraction technique for the remediation of soils contaminated with semi-volatile petroleum hydrocarbons. The composition of the organic phase was chosen in order to form a single phase mixture with an aqueous phase and simultaneously not being disturbed (forming stable emulsions) by the soil particles hauling the contaminants. It should also permit a regeneration of the organic solvent phase. As first, we studied the miscibility domain of the chosen ternary systems constituted by ethyl acetate–acetone–water. This system proved to satisfy the previous requirements allowing for the formation of a single liquid phase mixture within a large spectrum of compositions, and also allowing for an intimate contact with the soil. Contaminants in the diesel range within different functional groups were selected: xylene, naphthalene and hexadecane. The analytical control was done by gas chromatography with FID detector. The kinetics of the extractions proved to be fast, leading to equilibrium after 10 min. The effect of the solid–liquid ratio on the extraction efficiency was studied. Lower S/L ratios (1:8, w/v) proved to be more efficient, reaching recoveries in the order of 95%. The option of extraction in multiple contacts did not improve the recovery in relation to a single contact. The solvent can be regenerated by distillation with a loss around 10%. The contaminants are not evaporated and they remain in the non-volatile phase. The global results show that the ex situ solvent extraction is technically a feasible option for the remediation of semi-volatile aromatic, polyaromatic and linear hydrocarbons.
Resumo:
Cyclosporine-A-loaded PLGA implants were developed intended for ocular route. Implants were prepared using solvent extraction/evaporation technique followed by casting of the cake into rods in a heated surface. XRD patterns showed that cyclosporine-A was completely incorporated into PLGA. FTIR and DSC results indicated alterations on drug molecular conformation aiming to reach the most stable thermodynamic conformation at polymer/drug interface. Implants provided controlled/sustained in vitro release of the drug. During the first 7 weeks, the drug release was controlled by the diffusion of the cyclosporine-A; and between 7-23 week period, the drug diffusion and degradation of PLGA controlled the drug release.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.
Resumo:
Solvent extraction of calcium and magnesium impurities from a lithium-rich brine (Ca ~ 2,000 ppm, Mg ~ 50 ppm, Li ~ 30,000 ppm) was investigated using a continuous counter-current solvent extraction mixer-settler set-up. The literature review includes a general review about resources, demands and production methods of Li followed by basics of solvent extraction. Experimental section includes batch experiments for investigation of pH isotherms of three extractants; D2EHPA, Versatic 10 and LIX 984 with concentrations of 0.52, 0.53 and 0.50 M in kerosene respectively. Based on pH isotherms LIX 984 showed no affinity for solvent extraction of Mg and Ca at pH ≤ 8 while D2EHPA and Versatic 10 were effective in extraction of Ca and Mg. Based on constructed pH isotherms, loading isotherms of D2EHPA (at pH 3.5 and 3.9) and Versatic 10 (at pH 7 and 8) were further investigated. Furthermore based on McCabe-Thiele method, two extraction stages and one stripping stage (using HCl acid with concentration of 2 M for Versatic 10 and 3 M for D2EHPA) was practiced in continuous runs. Merits of Versatic 10 in comparison to D2EHPA are higher selectivity for Ca and Mg, faster phase disengagement, no detrimental change in viscosity due to shear amount of metal extraction and lower acidity in stripping. On the other hand D2EHPA has less aqueous solubility and is capable of removing Mg and Ca simultaneously even at higher Ca loading (A/O in continuous runs > 1). In general, shorter residence time (~ 2 min), lower temperature (~23 °C), lower pH values (6.5-7.0 for Versatic 10 and 3.5-3.7 for D2EHPA) and a moderately low A/O value (< 1:1) would cause removal of 100% of Ca and nearly 100% of Mg while keeping Li loss less than 4%, much lower than the conventional precipitation in which 20% of Li is lost.
Resumo:
The extracting agent 2,6-bis(4,6-di-pivaloylamino-1,3,5-triazin-2-yl)-pyridine (L-5) in n-octanol was found, in synergy with 2-bromodecanoic acid, to give D-Am/D-Eu separation factors (SFs) between 2.4 and 3.7 when used to extract the metal ions from 0.02-0.12 M HNO3. Slightly higher SFs (4-6) were obtained in the absence of the synergist when the ligand was used to extract Am(III) and Eu(III) from 0.98 M HNO3. In order to investigate the possible nature of the extracted species crystal structures of L-5 and the complex formed between Yb(III) with 2,6-bis(4,6-di-amino-1,3,5-triazin-2-yl)-pyridine (L-4) were also determined. The structure of L-5 shows 3 methanol solvent molecules all of which form 2 or 3 hydrogen bonds with triazine nitrogen atoms, amide nitrogen or oxygen atoms, or pyridine nitrogen atoms. However, L-5 is relatively unstable in metal complexation reactions and loses amide groups to form the parent tetramine L-4. The crystal structure of Yb(L-4)(NO3)(3) shows ytterbium in a 9-coordinate environment being bonded to three donor atoms of the ligand and three bidentate nitrate ions. The solvent extraction properties of L-4 and L-5 are far inferior to those found for the 2,6-bis-(1,2,4-triazin-3-yl)-pyridines (L-1) which have SF values of ca. 140 and theoretical calculations have been made to compare the electronic properties of the ligands. The electronic charge distribution in L-4 and L-5 is similar to that found in other terdentate ligands such as terpyridine which have equally poor extraction properties and suggests that the unique properties of L-1 evolve from the presence of two adjacent nitrogen atoms in the triazine rings.
Resumo:
The partitioning of minor trivalent actinides (An) from lanthanides (Ln) is one of the challenges in the chemical treatment of nuclear waste. The optimal ligand to carry out the separation of An(III) and Ln(III) using solvent extraction has to meet several important criteria: high selectivity towards the solute, chemical and radiolytic stability, stripping possibilities and recycling of the organic phase, high separation factors and good distribution ratio, to name just a few of them. A chronological line can be drawn along the development of each extraction ligand family and some milestones are emphasized in this overview. Further developments in organic synthesis of extracting ligands are expected.
Resumo:
Liquid-liquid equilibrium experimental data for refined sunflower seed oil, artificially acidified with commercial oleic acid or commercial linoleic acid and a solvent (ethanol + water), were determined at 298.2 K. This set of experimental data and the experimental data from Cuevas et al.,(1) which were obtained from (283.2 to 333.2) K, for degummed sunflower seed oil-containing systems were correlated using NRTL and UNIQUAC models with temperature-dependent binary parameters. The deviation between experimental and calculated compositions presented average values of (1.13 and 1.41) % for NRTL and UNIQUAC equations, respectively, indicating that the models were able to correctly describe the behavior of compounds under different temperature and solvent hydration.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)