942 resultados para SWNT-PEG 


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os nanomateriais apresentam uma escala na qual ao menos uma das dimensões varia entre 1 e 100 nm e possuem propriedades químicas, físicas ou biológicas dependentes da nanoestrutura e que lhes confere características funcionais de interesse para fins comerciais ou aplicações na área médica. Dentre os nanomateriais mais estudados e utilizados, destacam-se os de carbono, que incluem os fulerenos e os nanotubos de carbono (NT). Uma potencial utilização dos nanomateriais de carbono é na área biomédica, já que estes podem interagir com os sistemas biológicos em nível molecular e supramolecular com alto grau de especificidade. Em contrapartida, é importante considerar que os nanotubos de carbono podem exercer efeitos tóxicos, tendo como possível mecanismo o estresse oxidativo. Sendo assim, o objetivo desse trabalho foi investigar a ação dos nanotubos de carbono de parede única funcionalizados com polietilenoglicol (SWNT-PEG) em Danio rerio “zebrafish” (Teleostei, Cyprinidae). Avaliaram-se parâmetros bioquímicos, histológicos, comportamentais e de biodistribuição para entender como esse material se comporta in vitro e in vivo. Foi observado que o tipo de funcionalização é determinante para a ação desse material em meio biológico. No experimento in vitro o SWNT-PEG não mostrou efeito pró-oxidante nas avaliações de peroxidação lipídica, capacidade antioxidante total, conteúdo de GSH e atividade de GCL. Na exposição intraperitoneal em zebrafish constatou-se a agregação e geração de processo inflamatório, o que sugere que a cadeia de PEG utilizada para a funcionalização dos NT possui um tamanho inadequado e/ou uma funcionalização ineficiente para manter a estabilidade do material em meio biológico e evitar uma resposta inflamatória por parte do organismo exposto. Possivelmente devido a esta característica do nanomaterial, nas análises de biodistribuição, através de espectroscopia Raman, não se observou distribuição de SWNT-PEG no sistema nervoso central de zebrafish. No entanto, através da análise histológica foi observado processo inflamatório no tecido nervoso central, bem como alterações comportamentais avaliadas na tarefa de campo aberto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic conductivity in (PEG)(x)LiBr systems is measured using the complex impedance method in the temperature range -20 degrees C to 100 degrees C. For x = 6 and 10, above a certain concentration dependent temperature T-c, a power law fit based on mode coupling theory is seen to better explain the data than the Vogel-Tamman-Fulcher (VTF) expression. Li-7 NMR linewidth measurements indicate two regions of motional narrowing, one attributable to segmental motion and the other to translational diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG) x NH4I. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte were exposed to a beam of 8 MeV electrons to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples were also quenched at liquid nitrogen temperature and conductivity measurements were made. The ionic conductivity at room temperature exhibits a characteristic double peak for the composition x = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and proton NMR measurements also support this conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrolytes based on polyethylene glycol (PEG, mol.wt.8000) and LiCl of compositions, (PEG)(x)LiCl, x=4, 6, 8, 10, 12, 40, 60, where x is the O/Li ratio, were prepared by solution casting from methanol solutions. FTIR studies indicate that the ether oxygens of the polymer chain participate in Li+ ion conduction. The presence of a salt-polymer complex that melts around 190 degrees C was evidenced by DSC measurements for the electrolytes with compositions x<12. The highest conductivity was obtained at the composition x=10 which was attributed to the presence of a mostly amorphous compound. NMR measurements indicated two regions of motional narrowing, one attributable to the glass transition and another to translational diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of (PEG)(x)NH4ClO4 (x = 5 to 1000) were prepared and characterized. The physical properties are observed to be a sensitive function of concentration. Hygroscopicity increases as salt content increases. Conductivity peaks (sigma = 2.7 x 10(-6) S/cm) at x = 46. The H-1 NMR line width has a minimum at x = 46, while that of Cl-35 monotonically increases with salt concentration, indicating that the complex is essentially a protonic conductor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new polymer electrolyte (PEG)(x) NH4ClO4(x = 5, 10, 15, 20) has been prepared that shows protonic conduction. The room temperature conductivities are of the order of 10(-7) S/cm, and increase with decrease in salt concentration. NMR line width studies indicate fairly low glass transition temperatures of the polymer salt complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.