998 resultados para SURFACTANT FILMS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Siliceous mesostructured cellular foam with three-dimensional (3D) wormhole structure (MSU-type) is prepared by using triblock copolymer (poly(styrene-b-butadiene-b- styrene), SBS) with both hydrophobic head and tail group as template in strong acid condition via microemulsion method. The effects of SBS addition and temperature on the morphology and physicochemical properties, such as pore diameters, surface areas and pore volumes of the materials have been investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM) and nitrogen adsorption-desorption analysis. The results show that the pore volumes, pore sizes and specific surface areas depend strongly on the SBS amount and forming micelles temperature. Moreover, the materials obtained with high wall thickness exhibit a relatively good thermal stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vesicle of didodecyldhnethylammonimn bromide (DDAB) which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 x 10(-7) mol/L and the liner range was from 4 x 10(-7) mol/L to 2.4 x 10(-6) mol/L.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the incorporation of hydrophobic plasticizers (acetyltributyl citrate - ATB, tributyl citrate - TB and acetyltriethyl citrate - ATC) in a matrix of gelatin, using the saponin extracted from Yucca schidigera (yucca) as emulsifier, in the production of biodegradable emulsified films using the casting technique. High levels of hydrophobic plasticizers were incorporated, reaching up to 75% of plasticizer in relation to the protein (w/w) for ATB and TB, and up to 60% for ATC. The minimum values of water vapor permeability were 0.08, 0.07 and 0.06 g mm m(-2) h(-1) kPa(-1) for ATB, TB and ATC respectively, with no significant differences (p > 0.05). The water solubility of the films ranged from 21% to 59.5%. Although the WVP decreased, both scanning electron microscopy and laser scanning confocal microscopy indicated that the incorporation of the hydrophobic plasticizers did not occur homogeneously in the film matrix. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permeation of gases through single surfactant stabilized aqueous films has previously been studied in view of the potentiality of foam to separate gaseous mixtures. The earlier analysis assumed that the gas phase was well mixed and that the mass-transfer process was completely controlled by the liquid film. Permeabilities evaluated from single film data based on such analysis failed to predict the mass-transfer data obtained on permeation through two films. It is shown that the neglect of gas-phase resistance and the effect of film movement is the reason for the failure of the well-mixed gas models. An exact analysis of diffusion through two films is presented. It successfully predicts the experimental data on two films based on parameters evaluated from single film data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as Im-n-Im], 2Br(-) (n = 2, 5,6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units (CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.