998 resultados para SURFACE RECOMBINATION VELOCITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV- grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface texturization is an effective way to enhance the absorption of light for optoelectronic devices but it also aggravates the surface recombination by enlarging the surface area. In order to evaluate the influence of texture structures on the surface recombination, an effective surface recombination velocity is defined which is assumed to have an equivalent recombination effect on a flat surface. Based on numerical and analytical calculation, the dependences of effective surface recombination on the pattern geometry, the surface recombination velocity, and the diffusion length are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recombination and the faradaic fluxes are shown to be sensitive to the location of a single level recombination center, when it is located near the band edges. As the surface level is shifted deeper into the band gap from either of the band edges, the back emission terms are dominated by electron capture and hole capture terms, and the occupancy of the surface level is no longer determined by its location in the band gap. However, when one of the back emission terms determines the surface state occupancy, it is shown that there exists a simple relation between the value of the surface level and the recombination and the faradaic fluxes respectively. Expressions to this effect are derived and verified in the case of the recombination flux, which characterized by the potential at which it attains its maximum value. For the faradaic flux the results are qualitative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data of velocity and magnetic fields in the solar photosphere (5324 angstrom) and the chromosphere (4861 angstrom) clearly show the features of tangential discontinuity of velocity in the chromosphere. The velocity fields in and near the solar active region named No. 88029 by the Huairou Station have been analyzed in detail. A lot of magnetohydrodynamic discontinuous surfaces, especially the tangential discontinuities, are shown from the observations. The calculations of the thickness of discontinuous layer and the evolution time of instability agree with the observational results. The variations of the flow field will directly influence the evolutions and changes of the active region as the magnetic field are coupled closely with the plasma motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data set consists of maps of total velocity of the surface current in the North-Western Tyrrhenian Sea and Ligurian Sea averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by HF Radar are representative of the upper 0.3-2.5 meters of the ocean. Total velocities are derived using least square fit that maps radial velocities measured from individual sites onto a cartesian grid. The final product is a map of the horizontal components of the ocean currents on a regular grid in the area of overlap of two or more radar stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data set consists of maps of total velocity of the surface current in the Southeastern Bay of Biscay averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by this HF Radar(4.65 MHz) are representative of the upper 2-3 meters of the ocean. The main objective of near real time processing is to produce the best product from available data at the time of processing. Total velocities are derived using least square fit that maps radial velocities measured from individual sites onto a cartesian grid. The final product is a map of the horizontal components of the ocean currents on a regular grid in the area of overlap of two or more radar stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical and experimental investigations of charge-carrier dynamics at semiconductor/liquid interfaces, specifically with respect to interfacial electron transfer and surface recombination, are presented.

Fermi's golden rule has been used to formulate rate expressions for charge transfer of delocalized carriers in a nondegenerately doped semiconducting electrode to localized, outer-sphere redox acceptors in an electrolyte phase. The treatment allows comparison between charge-transfer kinetic data at metallic, semimetallic, and semiconducting electrodes in terms of parameters such as the electronic coupling to the electrode, the attenuation of coupling with distance into the electrolyte, and the reorganization energy of the charge-transfer event. Within this framework, rate constant values expected at representative semiconducting electrodes have been determined from experimental data for charge transfer at metallic electrodes. The maximum rate constant (i.e., at optimal exoergicity) for outer-sphere processes at semiconducting electrodes is computed to be in the range 10-17-10-16 cm4 s-1, which is in excellent agreement with prior theoretical models and experimental results for charge-transfer kinetics at semiconductor/liquid interfaces.

Double-layer corrections have been evaluated for semiconductor electrodes in both depletion and accumulation conditions. In conjuction with the Gouy-Chapman-Stern model, a finite difference approach has been used to calculate potential drops at a representative solid/liquid interface. Under all conditions that were simulated, the correction to the driving force used to evaluate the interfacial rate constant was determined to be less than 2% of the uncorrected interfacial rate constant.

Photoconductivity decay lifetimes have been obtained for Si(111) in contact with solutions of CH3OH or tetrahydrofuran containing one-electron oxidants. Silicon surfaces in contact with electrolyte solutions having Nernstian redox potentials > 0 V vs. SCE exhibited low effective surface recombination velocities regardless of the different surface chemistries. The formation of an inversion layer, and not a reduced density of electrical trap sites on the surface, is shown to be responsible for the long charge-carrier lifetimes observed for these systems. In addition, a method for preparing an air-stable, low surface recombination velocity Si surface through a two-step, chlorination/alkylation reaction is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm² V⁻¹ s⁻¹, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s⁻¹. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10⁵ cm s⁻¹. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel method for determining semiconductor parameters such as diffusion length L, lifetime tau and surface recombination velocity S of minority carriers by employing scanning electron microscopy (SEM). This new method is applicable to both electron beam induced current (EBIC and surface electron beam induced voltage (SEBIV) modes in SEM. The quantitative descriptions for EBIC and SEBIV signals are derived. The parameters L, S and tau can be directly extracted from the expressions for EBIC or SEBIV signals and their relaxation characteristics in experiment. As an example, the values of L, S and tau for n-p junction and p-Si crystal are determined by using the novel method in EBIC or SEBIV mode. The carrier diffusion length of a p-Si crystal is determined to be 8.74 mum in SEBIV mode. It is very close to the normal diffusion length of 7.41 mum of this sample. The novel method is proved to be very helpful for the quantitative characterization of semiconductor materials and devices. Especially, the SEBIV mode in SEM shows great potential for investigating semiconductor structures nondestructively.