986 resultados para SURFACE WATERS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the occurrence of pharmaceuticals and personal care products (PPCP's) in surface waters of Florida and their potential to be use as indicators of wastewater contamination. Previous studies have shown that elimination of pharmaceuticals in municipal sewage treatment plants is often incomplete. Aquatic ecosystems are under increased stress from human activities, particularly in heavily populated areas. The purpose of this study was to find an ideal indicator for wastewater. The applied methods, GC/MS and LC/MS, were suitable for the determination of pharmaceuticals and personal care products in aqueous environmental samples to the lower parts-per-trillion (ng/L) level. As a result of this study a snapshot view of the occurrence of pharmaceuticals and personal care products in south Florida was produced. PPCP's were commonly detected in coastal environments of South Florida at relatively low concentrations. In general, PPCP's were higher inside the canals and contained bodies of water than in open water systems. Caffeine was successfully used to describe impacted versus pristine locations. However, no particular correlation was observed among caffeine and other traditional water quality parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (epsilon-Nd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and epsilon-Nd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ~25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.