921 resultados para SUPERVISED LEARNING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a manifold learning method is applied to the problem of WLAN positioning and automatic radio map creation. Due to the nature of WLAN signal strength measurements, a signal map created from raw measurements results in non-linear distance relations between measurement points. These signal strength vectors reside in a high-dimensioned coordinate system. With the help of the so called Isomap-algorithm the dimensionality of this map can be reduced, and thus more easily processed. By embedding position-labeled strategic key points, we can automatically adjust the mapping to match the surveyed environment. The environment is thus learned in a semi-supervised way; gathering training points and embedding them in a two-dimensional manifold gives us a rough mapping of the measured environment. After a calibration phase, where the labeled key points in the training data are used to associate coordinates in the manifold representation with geographical locations, we can perform positioning using the adjusted map. This can be achieved through a traditional supervised learning process, which in our case is a simple nearest neighbors matching of a sampled signal strength vector. We deployed this system in two locations in the Kumpula campus in Helsinki, Finland. Results indicate that positioning based on the learned radio map can achieve good accuracy, especially in hallways or other areas in the environment where the WLAN signal is constrained by obstacles such as walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rowland, J.J. (2003) Model Selection Methodology in Supervised Learning with Evolutionary Computation. BioSystems 72, 1-2, pp 187-196, Nov

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rowland, J. J. (2003) Generalisation and Model Selection in Supervised Learning with Evolutionary Computation. European Workshop on Evolutionary Computation in Bioinformatics: EvoBio 2003. Lecture Notes in Computer Science (Springer), Vol 2611, pp 119-130

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a system that learns from examples to recognize people in images taken indoors. Images of people are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector Machine classifiers (SVMs). Different types of multiclass strategies based on SVMs are explored and compared to k-Nearest Neighbors classifiers (kNNs). The system works in real time and shows high performance rates for people recognition throughout one day.