8 resultados para SUPERPHOSPHATES
Resumo:
Mode of access: Internet.
Resumo:
Samples from the weathering mantle containing crandallite of three Brazilian phosphate deposits, Tapira, Catalo, and Juqui, were characterized, calcined, and agronomically evaluated. The calcination process increased total phosphorus (P) and neutral ammonium citrate soluble (NAC) P contents of all samples. The NAC solubility of original Tapira, Catalo, and Juqui was about 5% of total P, whereas for calcined samples it was 54, 16, and 53%, respectively. In a greenhouse study, rates of P were applied at 0, 10, 20, 40, 80, and 120mg P kg(-1) from the calcined materials and MCP (monocalcium phosphate) to an Ultisol cropped with upland and flooded rice for 65 days. The results showed that the calcined P samples increased dry-matter yield and P uptake with increasing rates of P applied for both crops. Tapira and Juqui were more effective for flooded than for upland rice. The calculated values of relative agronomic effectiveness of Tapira, Catalo, and Juqui with respect to MCP were 57, 48, and 53% in dry-matter yield for upland rice and 64, 50, and 69% for flooded rice, respectively.
Resumo:
There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.
Resumo:
In order to find out the best way to supply phosphorus to coffee plants when growing in "terra roxa misturada", a red soil with a high fixing capacity, tagged superphosphate was applied by the following procedures: (1) topdressed in a circular strip around the trees; (2) placed in the bottom of a circular furrow 15 cm deep; (3) placed in a semicircular furrow also 15 cm deep; (4) sprayed directly to the leaves. In each case 150 gms. of ordinary superphosphate tagged with H3 P32 O4 to give 5 X 10(9) c.p.m. were given to the two and half year old coffee plants. It was found that for the several treatments of the total phosphorus in the leaves the following values, on a per cent basis, came from the applied superphosphates: (1) topdressed 10.2 per cent, (2) circular furrow 2.4 per cent, (3) semicircular furrow 1.7 per cent, (4) sprayed 38.0 per cent; one can see, then, that methods (2) and (3) commonly used by the coffee planters are a very inefficient way to supply phosphorus in this type of soil. The remarkable foliar absorption was checked twice: a water culture experiment was carried out, the radiophosphorus being supplied by brushing it in the upper and lower surfaces of a given leaf; radioactivity was detected all over the plant as a result both of absorption and translocation; on the other hand, leaves collected from the sprayed trees were radioautographed; the radioautographs showed the pattern of distribution of the P32 which indicates true absorption rather than a surface contamination. In another locality, an experiment was caried out with 8 year old plants growing in "arenito de Bauru" which is a sandy soil with much less phosphorus fixing capacity. In this experiment the aim was to compare absorption of tagged superphosphate by trees growin under mulch against plants not receiving this treatment, The uptake of phosphorus was the same for both sets of plants. In both field experiments soil samples down to 15 cm in the profile were collected and its 0.2NHC1 soluble phosphorus was counted; rather significant values were observed mainly in the upper 5 cm layers.
Resumo:
The concentration of orthophosphate ions released from Fe-K-P compounds (Fe3KH8(PO4)6 .6H2O and Fe3KH14(PO4)8 .4H2O) present in superphosphates increases with pH, which initially suggests that the agronomic effectiveness of P fertilizers containing high amounts of these compounds would also increase with soil pH but studies considering activity, instead of concentration, are necessary. With this purpose, both compounds were synthesized under laboratory conditions, characterized by elemental chemical analysis, optical microscopy, X ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and used in a solubility study. Solutions of 0.01, 0.05 and 0.1 mol L-1 NaCl with pH adjusted to 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 were prepared for the solubility study of H8-syn, H14-syn and a phosphate rock (PR) from Brazil. The orthophosphate activity as H2PO4- and HPO4(2-) was calculated in each situation as related to pH and ionic strength using software MINTEQ. The remaining precipitates after equilibrium were chemically analyzed and subjected to X ray, SEM and EDS. Results of chemical analysis and instrumental techniques confirmed the preparation method. The activity of orthophosphate ions of both compounds tended to decrease under increasing pH and/or ionic strength of the solution, which in turn suggests that an increase in the solution pH does not necessarily promote an increase in the P bioavailability for plant uptake. This can be important when evaluating agronomic data of P fertilizers with high contents of these two Fe-K-P compounds.
Resumo:
O tamanho reduzido das sementes de milheto dificulta sua semeadura uniforme, principalmente para os produtores que não possuem semeadoras apropriadas. Assim, a mistura das sementes com os fertilizantes fosfatados vem sendo utilizada para facilitar a semeadura. Entretanto, o período de contato pode provocar prejuízos na germinação e no vigor. Avaliou-se a qualidade fisiológica das sementes de milheto submetidas a diferentes períodos de contato (0, 6, 12, 24, 48, 72, 96 e 120h) com os fertilizantes superfosfato simples (SFS) e superfosfato triplo (SFT), em um experimento em delineamento inteiramente casualizado em esquema fatorial 8x2 (n=4). Os atributos químicos e físicos dos fertilizantes foram previamente determinados. Foi utilizada a proporção de 1 kg de sementes para 2,5 kg de fertilizante. Após manutenção da mistura em saco plástico no laboratório, as sementes foram separadas dos fertilizantes e submetidas à determinação de umidade, germinação, primeira contagem e condutividade elétrica. Paralelamente, na casa de vegetação, em caixas plásticas contendo terra, determinou-se a emergência e o índice de velocidade de emergência, sem e com a manutenção dos fertilizantes. Porque apresentam resíduos ácidos, tanto SFS como SFT afetaram de maneira semelhante e negativamente a germinação e o vigor das sementes de milheto em mistura, na medida em que se aumentou o período de contato.
Resumo:
The general concept that low-water-soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)-P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)-potassium (K)-P compounds present in superphosphates [Fe 3 KH 8 (PO 4 ) 6·6H 2 O, H8, and Fe 3 KH 14 (PO 4 ) 8·4H 2 O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg -1 as neutral ammonium citrate (NAC)+H 2 O-soluble P. Reagent-grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg -1 included. Also, mixtures of both Fe-K-P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg -1 ) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water-soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low-water-soluble P source cannot be deemed as ineffective at high soil pH. Copyright © Taylor & Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)