997 resultados para SUPERFICIAL ZONE PROTEIN


Relevância:

80.00% 80.00%

Publicador:

Resumo:

SUMMARY The ability of neuronal processes to find their way along complex paths and to establish appropriate connections depends on continual rearrangements of the cytoskeletal components. The regulation of microtubules plays an important role for morphological changes underlying nevrite outgrowth, axonal elongation, and growth cone steering. SCG10 (superior cervical ganglion clone 10) is a neuronal growthassociated protein developmentally regulated and highly enriched in the neuronal growth cones. SCG10 presents a microtubule destabilizing activity that could participate to the regulation of microtubule dynamics and thus explain microtubule behaviors in the growth cone during axonal elongation and turning. It is here suggested that a tight control of the opposite effects on microtubules of SCG10 and the stabilizing microtubule-associated protein MAP1B allows a fine tuning of cytoskeletal rearrangement and may provide the required microtubule dynamic instability to promote axonal growth. Moreover, antibodyblockade of SCG10 function, that leads to growth cone pauses similar as those triggered by the guidance molecule EphB, and the modulation of SCG10 activity by the Rho GTPase Rnd1 suggest a potential role for SCG10 in the signal transduction pathways of extracellular guidance cues. The identification of the active zone protein Bassoon as a potential interaction partner for the SCG10-related protein NPC2, using atomic force microscopy as well as COS-7 and neuronal cell cultures, also gives new insights for a role of this protein family into the processes of synapse genesis or plasticity. Finally, SCG10 mutant mice generated by gene targeting and expressing a soluble form of the protein have been characterized during early postnatal development and in the adulthood. Due to the deletion of its membrane binding domain, SCG10 specific subcellular targeting to growth cones is compromised and results in impairments of motor and coordination development. Further histological analysis in the sciatic nerve reveal that these symptoms are associated with neurodegenerative signs. RESUME Une navigation correcte des prolongements cellulaires neuronaux leur permettant de former des connections appropriées repose sur de continuels réarrangements des constituants de leur cytosquelette. La régulation des microtubules joue notamment un rôle important dans les changements morphologiques qui accompagnent la croissance axonale et les réorientations du cône de croissance. SCG10 (superior cervical ganglion clone 10) est une protéine étroitement associée à la croissance neuronale, hautement régulée durant le développement et abondante au niveau du cône de croissance. SCG10 présente une activité déstabilisatrice sur les microtubules qui pourrait permettre une régulation des paramètres dynamiques propres aux microtubules et ainsi expliquer leur comportement durant la navigation du cône de croissance. Il est ici proposé qu'un contrôle précis des effets opposés de SCG10 et d'une autre protéine stabilisante associée aux microtubules (MAP1 B) permette un réglage fin des réarrangements du cytosquelette et puisse ainsi produire l'instabilité dynamique nécessaire à la croissance anale. Par ailleurs, le blocage de la fonction de SCG10 par un anticorps spécifique, conduisant à des pauses du cônes de croissance similaires à celles provoquées par la molécule de guidage EphB, ainsi que la modulation de l'activité de SCG10 par la Rho GTPase Rnd1 suggèrent une potentielle implication de SCG10 dans les voies de transduction des signaux provenant de molécules de guidage extracellulaires. L'identification d'une interaction de la protéine synaptique Bassoon avec la protéine NPC2 apparentée à SCG10, au moyen de la microscopie à force atomique et dans des cultures de cellules neuronales et COS-7, ouvre des perspectives concernant ces protéines dans la formation et la plasticité synaptiques. Finalement, des souris mutantes pour SCG10 produites par ciblage de gène et exprimant une forme soluble de la protéine ont été caractérisées durant la phase précoce du développement et à l'âge adulte. La délétion du domaine permettant l'ancrage de SCG10 aux membranes compromet sa sub-localisation au niveau du cône de croissance et résulte en l'apparition de troubles moteurs et de la coordination. Des analyses histologiques complémentaires au niveau du nerf sciatique montrent que ces symptômes sont associés avec des signes neurodégénératifs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. METHODS: Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. RESULTS: A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 +/- 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. CONCLUSIONS: These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Understanding of articular cartilage physiology, remodelling mechanisms, and evaluation of tissue engineering repair methods requires reference information regarding normal structural organization. Our goals were to examine the variation of cartilage cell and matrix morphology in different topographical areas of the adult human knee joint. METHODS: Osteochondral explants were acquired from seven distinct anatomical locations of the knee joints of deceased persons aged 20-40 years and prepared for analysis of cell, matrix and tissue morphology using confocal microscopy and unbiased stereological methods. Differences between locations were identified by statistical analysis. RESULTS: Medial femoral condyle cartilage had relatively high cell surface area per unit tissue volume in the superficial zone. In the transitional zone, meniscus-covered lateral tibia cartilage showed elevated chondrocyte densities compared to the rest of the knee while lateral femoral condyle cartilage exhibited particularly large chondrocytes. Statistical analyses indicated highly uniform morphology throughout the radial zone (lower 80% of cartilage thickness) in the knee, and strong similarities in cell and matrix morphologies among cartilage from the femoral condyles and also in the mediocentral tibial plateau. Throughout the adult human knee, the mean matrix volume per chondron was remarkably constant at approximately 224,000 microm(3), corresponding to approximately 4.6 x 10(6) chondrons per cm(3). CONCLUSIONS: The uniformity of matrix volume per chondron throughout the adult human knee suggests that cell-scale biophysical and metabolic constraints may place limitations on cartilage thickness, mechanical properties, and remodelling mechanisms. Data may also aid the evaluation of cartilage tissue engineering treatments in a site-specific manner. Results indicate that joint locations which perform similar biomechanical functions have similar cell and matrix morphologies; findings may therefore also provide clues to understanding conditions under which focal lesions leading to osteoarthritis may occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE Marked differences exist between human knee and ankle joints regarding risks and progression of osteoarthritis (OA). Pathomechanisms of degenerative joint disease may therefore differ in these joints, due to differences in tissue structure and function. Focussing on structural issues which are design goals for tissue engineering, we compared cell and matrix morphologies in different anatomical sites of adult human knee and ankle joints. METHODS Osteochondral explants were acquired from knee and ankle joints of deceased persons aged 20 to 40 years and analyzed for cell, matrix and tissue morphology using confocal and electron microscopy and unbiased stereological methods. Variations associated with joint (knee versus ankle) and biomechanical role (convex versus concave articular surfaces) were identified by 2-way analysis of variance and post-hoc analysis. RESULTS Knee cartilage exhibited higher cell densities in the superficial zone than ankle cartilage. In the transitional zone, higher cell densities were observed in association with convex versus concave articular surfaces, without significant differences between knee and ankle cartilage. Highly uniform cell and matrix morphologies were evident throughout the radial zone in the knee and ankle, regardless of tissue biomechanical role. Throughout the knee and ankle cartilage sampled, chondron density was remarkably constant at approximately 4.2×10(6) chondrons/cm(3). CONCLUSION Variation of cartilage cell and matrix morphologies with changing joint and biomechanical environments suggests that tissue structural adaptations are performed primarily by the superficial and transitional zones. Data may aid the development of site-specific cartilage tissue engineering, and help identify conditions where OA is likely to occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using multiple-choice feeding experiments, the selection of six species of macrophytes by the herbivorous rabbitfish Siganus fuscescens was examined. The rabbitfish showed distinct food choice in the laboratory; however, selection of macrophytes by S. fuscescens was not related to their absolute nutrient content (nitrogen, carbon, energy and ash free dry mass). Nutrient assimilation estimates showed that the macrophytes which were most preferred were those that S. fuscescens assimilated best. In S. fuscescens, the macrophytes that were preferred passed through the gut significantly faster than the less preferred species. Gut transit time had a significant effect on the absolute value of a food item in terms of net nutrient gain per unit time. This study showed that food value could be inferred from the absolute nutrient content of the macrophytes. Thus both the ability to assimilate nutrients as well as the absolute nutrient content of macrophytes must be quantified when assessing food value. (C) 2004 The Fisheries society of the British Isles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Articular cartilage undergoes severe loss of proteoglycan and its constituent glycosaminoglycans (GAGs) in osteoarthritis. We hypothesize that the low GAG content of osteoarthritic cartilage renders the tissue susceptible to pathological vascularization. This was investigated using an in vitro angiogenesis model assessing endothelial cell adhesion to GAG-depleted cartilage explants. Bovine cartilage explants were treated with hyaluronidase to deplete GAG content and then seeded with fluorescently tagged human endothelial cells (HMEC-1). HMEC-1 adherence was assessed after 4 hr and 7 days. The effect of hyaluronidase treatment on GAG content, chondrocyte viability, and biochemical composition of the extracellular matrix was also determined. Hyaluronidase treatment reduced the GAG content of cartilage explants by 78 ± 3% compared with that of controls (p <0.0001). GAG depletion was associated with significantly more HMEC-1 adherence on both the surface (superficial zone) and the underside (deep zone) of the explants (both p <0.0001). The latter provided a more favorable environment for extended culture of HMEC-1 compared with the articulating surface. Hyaluronidase treatment altered the immunostaining for chondroitin sulfate epitopes, but not for lubricin. Our results support the hypothesis that articular cartilage GAGs are antiadhesive to endothelial cells and suggest that chondroitin sulfate and/or hyaluronan are responsible. The loss of these GAGs in osteoarthritis may allow osteochondral angiogenesis resulting in disease progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

YPT/rab proteins are ras-like small GTP-binding proteins that serve as key regulators of vesicular transport. The mRNA levels of two YPT/rab genes in pea plants are repressed by light, with the process mediated by phytochrome. Here, we examined the mRNA expression and the location of the two proteins, pra2- and pra3-encoded proteins, using monoclonal antibodies. The pra2 and pra3 mRNA levels were highest in the stems of dark-grown seedlings. The corresponding proteins were found in the cytosol and the membranes of the stems. Most of the pra2 protein was in the growing internodes, especially in the growing region, but the pra3 protein was widespread. These results suggest that the pra2 protein is important for vesicular transport in stems, possibly contributing to stem growth in the dark, and that the pra3 protein is important for general vesicular transport. The amounts of pra2 and pra3 proteins decreased with illumination. The decrease in these proteins may be related to the phytochrome-dependent inhibition of stem growth that occurs in etiolated pea seedlings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The feasibility of employing classical electrophoresis theory to determine the net charge (valence) of proteins by capillary zone electrophoresis is illustrated in this paper. An outline of a procedure to facilitate the interpretation of mobility measurements is demonstrated by its application to a published mobility measurement for Staphylococcal nuclease at pH 8.9 that had been obtained by capillary zone electrophoresis. The significantly higher valence of +7.5 (cf. 5.6 from the same series of measurements) that has been reported on the basis of a charge ladder approach for charge determination signifies the likelihood that the latter generic approach may be prone to error arising from nonconformity of the experimental system with an inherent assumption that chemical modification or mutation of amino acid residues has no effect on the overall three-dimensional size and shape of the protein. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reconstructed Middle Pleistocene surface hydrography in the western South Atlantic based on planktonic foraminiferal assemblages, modern analog technique and Globorotalia truncatulinoides isotopic ratios of core SP1251 (38 degrees 29.7`S / 53 degrees 40.7`W / 3400 m water depth). Biostratigraphic analysis suggests that sediments were deposited between 0.3 and 0.12 Ma and therefore correlate to Marine Isotopic Stage 6 or 8. Faunal assemblage-based winter and summer SST estimates suggest that the western South Atlantic at 38 degrees S was 4-6 degrees C colder than at present, within the expected range for a glacial interval. High relative abundances of subantarctic species, particularly the dominance of Neogloboquadrina pachyderma (left), support lower than present SSTs throughout the recorded period. The oxygen isotopic composition of G. truncatulinoides suggests a northward shift of the Brazil-Malvinas Confluence Zone and of the associated mid-latitude frontal system during this Middle Pleistocene cold period, and a stronger than present influence of superficial subantarctic waters and lowering in SSTs at our core site during the recorded Middle Pleistocene glacial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims: Hepatic steatosis has been shown to be associated with lipid peroxidation and hepatic fibrosis in a variety of liver diseases including non-alcoholic fatty liver disease. However, the lobular distribution of lipid peroxidation associated with hepatic steatosis, and the influence of hepatic iron stores on this are unknown. The aim of this study was to assess the distribution of lipid peroxidation in association with these factors, and the relationship of this to the fibrogenic cascade. Methods: Liver biopsies from 39 patients with varying degrees of hepatic steatosis were assessed for evidence of lipid peroxidation (malondialdehyde adducts), hepatic iron, inflammation, fibrosis, hepatic ;stellate cell activation (alpha-smooth muscle actin and TGF-beta expression) and collagen type I synthesis (procollagen a 1 (I) mRNA). Results: Lipid peroxidation occurred in and adjacent to fat-laden hepatocytes and was maximal in acinar zone 3. Fibrosis was associated with steatosis (P < 0.04), lipid peroxidation (P < 0.05) and hepatic iron stores (P < 0.02). Multivariate logistic regression analysis confirmed the association between steatosis and lipid peroxidation within zone 3 hepatocytes (P < 0.05), while for hepatic iron, lipid peroxidation was seen within sinusoidal cells (P < 0.05), particularly in zone 1 (P < 0.02). Steatosis was also associated with acinar inflammation (P < 0.005). α-Smooth muscle actin expression was present in association with both lipid peroxidation and fibrosis. Although the effects of steatosis and iron on lipid peroxidation and fibrosis were additive, there was no evidence of a specific synergistic interaction between them. Conclusions: These observations support a model where steatosis exerts an effect on fibrosis through lipid peroxidation, particularly in zone 3 hepatocytes. (C) 2001 Blackwell Science Asia Pty Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AICMA 2012 (BIT's 1st Annual International Congress of Marine Algae), World Expo Center, Dalian, China, 20-23 de Setembro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) of the butanolic extract (BUTE) of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1), amino acid metabolism (ILV5, PDC11) and protein synthesis (ASC1) pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides), it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.