946 resultados para SUBTHALAMIC NUCLEUS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) is a treatment routinely used to alleviate the symptoms of Parkinson's disease (PD). In this type of treatment, electrical pulses are applied through electrodes implanted into the basal ganglia of the patient. As the symptoms are not permanent in most patients, it is desirable to develop an on-demand stimulator, applying pulses only when onset of the symptoms is detected. This study evaluates a feature set created for the detection of tremor - a cardinal symptom of PD. The designed feature set was based on standard signal features and researched properties of the electrical signals recorded from subthalamic nucleus (STN) within the basal ganglia, which together included temporal, spectral, statistical, autocorrelation and fractal properties. The most characterized tremor related features were selected using statistical testing and backward algorithms then used for classification on unseen patient signals. The spectral features were among the most efficient at detecting tremor, notably spectral bands 3.5-5.5 Hz and 0-1 Hz proved to be highly significant. The classification results for determination of tremor achieved 94% sensitivity with specificity equaling one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Thalamotomies and pallidotomies were commonly performed before the deep brain stimulation (DBS) era. Although ablative procedures can lead to significant dystonia improvement, longer periods of analysis reveal disease progression and functional deterioration. Today, the same patients seek additional treatment possibilities. Methods: Four patients with generalized dystonia who previously had undergone bilateral pallidotomy came to our service seeking additional treatment because of dystonic symptom progression. Bilateral subthalamic nucleus DBS (B-STN-DBS) was the treatment of choice. The patients were evaluated with the BurkeFahnMarsden Dystonia Rating Scale (BFMDRS) and the Unified Dystonia Rating Scale (UDRS) before and 2 years after surgery. Results: All patients showed significant functional improvement, averaging 65.3% in BFMDRS (P = .014) and 69.2% in UDRS (P = .025). Conclusions: These results suggest that B-STN-DBS may be an interesting treatment option for generalized dystonia, even for patients who have already undergone bilateral pallidotomy. (c) 2012 Movement Disorder Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established treatment for advanced Parkinson's disease (PD) with disabling motor complications. However, stimulation may be beneficial at an earlier stage of PD when motor fluctuations and dyskinesia are only mild and psychosocial competence is still maintained. The EARLYSTIM trial was conducted in patients with recent onset of levodopa-induced motor complications (<3 years) whose social and occupational functioning remained preserved. This is called 'early' here. The study was a randomized, multicenter, bi-national pivotal trial with a 2 year observation period. Quality of life was the main outcome measure, and a video-based motor score was a blinded secondary outcome of the study. Motor, neuropsychological, psychiatric and psychosocial aspects were captured by established scales and questionnaires. The patient group randomized here is the earliest in the disease course and the youngest recruited in controlled DBS trials so far. The methodological innovation for DBS-studies of this study lies in novel procedures developed and used for monitoring best medical treatment, neurosurgical consistency, best management of stimulation programming, blinded video assessment of motor disability, and prevention of suicidal behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the neuropsychological outcome as a safety measure and quality control in patients with subthalamic nucleus (STN) stimulation for PD. Background: Deep brain stimulation (DBS) is considered a relatively safe treatment used in patients with movement disorders. However, neuropsychological alterations have been reported in patients with STN DBS for PD. Cognition and mood are important determinants of quality of life in PD patients and must be assessed for safety control. Methods: Seventeen consecutive patients (8 women) who underwent STN DBS for PD have been assessed before and 4 months after surgery. Besides motor symptoms (UPDRS-III), mood (Beck Depression Inventory, Hamilton Depression Rating Scale) and neuropsychological aspects, mainly executive functions, have been assessed (mini mental state examination, semantic and phonematic verbal fluency, go-no go test, stroop test, trail making test, tests of alertness and attention, digit span, wordlist learning, praxia, Boston naming test, figure drawing, visual perception). Paired t-tests were used for comparisons before and after surgery. Results: Patients were 61.6±7.8 years old at baseline assessment. All surgeries were performed without major adverse events. Motor symptoms ‘‘on’’ medication remained stable whereas they improved in the ‘‘off’’ condition (p<0.001). Mood was not depressed before surgery and remained unchanged at follow-up. All neuropsychological assessment outcome measures remained stable at follow-up with the exception of semantic verbal fluency and wordlist learning. Semantic verbal fluency decreased by 21±16% (p<0.001) and there was a trend to worse phonematic verbal fluency after surgery (p=0.06). Recall of a list of 10 words was worse after surgery only for the third attempt of recall (13%, p<0.005). Conclusions: Verbal fluency decreased in our patients after STN DBS, as previously reported. The procedure was otherwise safe and did not lead to deterioration of mood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apropos the basal ganglia, the dominant striatum and globus pallidus internus (GPi) have been hypothesised to represent integral components of subcortical language circuitry. Working subcortical language theories, however, have failed thus far to consider a role for the STN in the mediation of linguistic processes, a structure recently defined as the driving force of basal ganglia output. The aim of this research was to investigate the impact of surgically induced functional inhibition of the STN upon linguistic abilities, within the context of established models of basal ganglia participation in language. Two males with surgically induced 'lesions' of the dominant and non-dominant dorsolateral STN, aimed at relieving Parkinsonian motor symptoms, served as experimental subjects. General and high-level language profiles were compiled for each subject up to 1 month prior to and 3 months following neurosurgery, within the drug-on state (i.e., when optimally medicated). Comparable post-operative alterations in linguistic performance were observed subsequent to surgically induced functional inhibition of the left and right STN. More specifically, higher proportions of reliable decline as opposed to improvement in post-operative performance were demonstrated by both subjects on complex language tasks, hypothesised to entail the interplay of cognitive-linguistic processes. The outcomes of the current research challenge unilateralised models of functional basal ganglia organisation with the proposal of a potential interhemispheric regulatory function for the STN in the mediation of high-level linguistic processes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal burst firing in the subthalamic nucleus (STN) is one of the hallmarks of dopamine depletion in Parkinson's disease. Here, we have determined the postsynaptic effects of dopamine in the STN and the functional consequences of dopamine receptor modulation on burst firing in vitro. STN cells displayed regular spiking activity at a rate of 7.9 +/- 0.5 Hz. Application of dopamine (30 mu M) induced membrane depolarisations accompanied by an increase in firing rate of mean 12.0 +/- 0.6 Hz in all 69 cells. The dopamine effect was mimicked by the dopamine D1/D5 receptor agonist SKF38393 (10 mu M, 17 cells) and the dopamine D2-like receptor agonist quinpirole (10 mu M, 35 cells), partly reduced by D1/D5 antagonist SCH23390 (2 mu M, seven cells), but unaffected by the D2 antagonists sulpiride (10 mu M, seven cells) or eticlopride (10 mu M, six cells). Using voltage ramps, dopamine induced an inward current of 69 +/- 9.4 pA at a holding potential of -60 mV (n = 17). This current was accompanied by an increase in input conductance of 1.55 +/- 0.35 nS which reversed at -30.6 +/- 2.3 mV, an effect mimicked by SKF38393 (10 AM, nine cells). Similar responses were observed when measuring instantaneous current evoked by voltage steps and in the presence of the I-h blocker, ZD7288, indicating effects independent of I-h. The increase in conductance was blocked by SCH23390 (2 mu M, n = 4), mimicked by the activator of adenylyl cyclase forskolin (10 mu M, n = 7) and blocked by H-89, an inhibitor of cyclic AMP dependent protein kinase A (10 PM, n = 6). These results indicate that the dopamine depolarisation is in part mediated by D1/D5 receptor mediated activation of a cyclic-nucleotide gated (CNG) non-specific cation conductance. This conductance contributes to the membrane depolarisation that changes STN neuronal bursting to more regular activity by significantly increasing burst duration and number of spikes per burst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In accordance with its central role in basal ganglia circuitry, changes in the rate of action potential firing and pattern of activity in the globus pallidus (GP)-subthalamic nucleus (STN) network are apparent in movement disorders. In this study we have developed a mouse brain slice preparation that maintains the functional connectivity between the GP and STN in order to assess its role in shaping and modulating bursting activity promoted by pharmacological manipulations. Fibre-tract tracing studies indicated that a parasagittal slice cut 20 deg to the midline best preserved connectivity between the GP and the STN. IPSCs and EPSCs elicited by electrical stimulation confirmed connectivity from GP to STN in 44/59 slices and from STN to GP in 22/33 slices, respectively. In control slices, 74/76 (97%) of STN cells fired tonically at a rate of 10.3 ± 1.3 Hz. This rate and pattern of single spiking activity was unaffected by bath application of the GABAA antagonist picrotoxin (50 μM, n = 9) or the glutamate receptor antagonist (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM, n = 8). Bursting activity in STN neurones could be induced pharmacologically by application of NMDA alone (20 μM, 3/18 cells, 17%) but was more robust if NMDA was applied in conjunction with apamin (20-100 nM, 34/77 cells, 44%). Once again, neither picrotoxin (50 μM, n = 5) nor CNQX (10 μM, n = 5) had any effect on the frequency or pattern of the STN neurone activity while paired STN and GP recordings of tonic and bursting activity show no evidence of coherent activity. Thus, in a mouse brain slice preparation where functional GP-STN connectivity is preserved, no regenerative synaptically mediated activity indicative of a dynamic network is evident, either in the resting state or when neuronal bursting in both the GP and STN is generated by application of NMDA/apamin. This difference from the brain in Parkinson's disease may be attributed either to insufficient preservation of cortico-striato-pallidal or cortico-subthalamic circuitry, and/or an essential requirement for adaptive changes resulting from dopamine depletion for the expression of network activity within this tissue complex. © The Physiological Society 2005.