975 resultados para STRUCTURE-SENSITIVITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction pathways by which oxygen is incorporated into the substrate in the photocatalytic oxidation of terephthalic acid (TPTA) are vastly different on {001} and {101} facets of an anatase single crystal. This was established by controlling the percentage of {101} and {001} facets, isotopically tracing the origins of the hydroxy group, and studying dioxygen consumption and variance in the concentration of hydroxylation intermediate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Rh2/AlO3 catalysts have been prepared using untreated or pre-sulphated alumina supports. The effect of support sulphation on catalyst activity towards propene and propane combustion has been explored as a function of Rh loading. Light-off temperatures for the total oxidation of both hydrocarbons decrease with increasing Rh content, associated with a transition from small oxidic clusters to large metallic Rh particles. Sulphate promotes both propene and propane combustion equally, with the magnitude of promotion exhibiting only a weak loading dependence. Enhanced catalytic performance is accompanied by Rh reduction and sintering. © 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Structure at the polypurine-polypyrimidine sequences flanking the HpaII sites (CCGG) in pBR322 form V DNA was probed employing single-hit analysis using HpaII restriction endonuclease. Reduced cleavage efficiency of HpaII sites flanked by polypurine-polypyrimidine sequences suggested that under high torsional stress these sequences adopt unwound structures rendering these sites insensitive to restriction enzyme cleavage. In addition to polypurine-polypyrimidine sequences. HpaII sites flanked by alternating purine-pyrimidine sequence, a potential motif of left handed Z-DNA, were also found to be resistant to HpaII cleavage. Results obtained from various studies implicating structure sensitivity of restriction endonucleases and methylases were compiled and a direct correlation was observed between the occurrence of altered sites in a domain and its G/C content in pBR322 form V DNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present empirical investigation had a 3-fold purpose: (a) to cross-validate L. R. Offermann, J. K. Kennedy, and P. W. Wirtz's (1994) scale of Implicit Leadership Theories (ILTs) in several organizational settings and to further provide a shorter scale of ILTs in organizations; (b) to assess the generalizability of ILTs across different employee groups, and (c) to evaluate ILTs' change over time. Two independent samples were used for the scale validation (N 1 = 500 and N 2 = 439). A 6-factor structure (Sensitivity, Intelligence, Dedication, Dynamism, Tyranny, and Masculinity) was found to most accurately represent ILTs in organizational settings. Regarding the generalizability of ILTs, although the 6-factor structure was consistent across different employee groups, there was only partial support for total factorial invariance. Finally, evaluation of gamma, beta, and alpha change provided support for ILTs' stability over time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative investigations of the mechanisms and the kinetics of the surface-catalyzed activation of C-H, N-H, C-C, and C-N bonds on the close-packed surfaces of Ir(111) and Ru(001) have been performed. The interaction of CH_3NH_2 with Ru(001) was investigated in ultrahigh vacuum with the techniques of high-resolution electron energy loss spectroscopy and thermal desorption mass spectrometry. Activation of the central C-N bond is observed, but it is less favored than the competing channel of complete dehydrogenation, by a ratio between 2:1 to 3:1. The decomposition mechanism has been characterized with several surface intermediates and gas-phase products identified. A pronounced preference for the activation of C-H over N-H and C-N bonds has been established. Additionally, the kinetics of the initial dissociation of short chain alkanes on Ir(111) has been examined, and the rate parameters of the activation of C-C bonds and primary, secondary, and tertiary C-H bonds have been determined. The formation of primary alkyl products is favored, over most of the experimental temperature range, despite the thermodynamic preference for the activation of individual secondary and tertiary C-H bonds in comparison to individual primary C-H bonds. At higher surface temperatures, the activation of C-C bonds occurs at competitive rates to the C-H reaction channel. The measured deuterium kinetic isotope effect implicates substantial deformation of the terminal methyl group in the transition state of C-C bond cleavage. Finally, the surface structure sensitivity of C-H bond cleavage has been quantified for smooth (111) and corrugated (110) surfaces of iridium and platinum, as well as for step edge defect sites on Ir(111).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ethanol electro-oxidation reaction was studied on carbon-supported Pt, Rh, and on Pt overlayers deposited on Rh nanoparticles. The synthesized electrocatalysts were characterized by TEM and XRD. The reaction products were monitored by on-line DEMS experiments. Potentiodynamic curves showed higher overall reaction rate for Pt/C when compared to that for Rh/C. However, on-line DEMS measurements revealed higher average current efficiencies for complete ethanol electro-oxidation to CO2 on Rh/C. The average current efficiencies for CO2 formation increased with temperature and with the decrease in the ethanol concentration. The total amount of CO2, on the other hand, was slightly affected by the temperature and ethanol concentration. Additionally, the CO2 signal was observed only in the positive-going scan, none being observed in the negative-going scan, evidencing that the C-C bond breaking occurs only at lower potentials. Thus, the formation of CO2 mainly resulted from oxidative removal of adsorbed CO and CHx,ad species generated at the lower potentials, instead of the electrochemical oxidation of bulk ethanol molecules. The acetaldehyde mass signal, however, was greatly favored after increasing the ethanol concentration from 0.01 to 0.1 mol L-1, on both electrocatalysts, indicating that it is the major reaction product. For the Pt/Rh/C-based electrocatalysts, the Faradaic current and the conversion efficiency for CO2 formation was increased by adjusting the amount of Pt on the surface of the Rh/C nanoparticles. The higher conversion efficiency for CO2 formation on the Pt1Rh/C material was ascribed to its faster and more extensive ethanol deprotonation on the Pt-Rh sites, producing adsorbed intermediates in which the C-C bond cleavage is facilitated. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vertical profile of aerosol in the planetary boundary layer of the Milan urban area is studied in terms of its development and chemical composition in a high-resolution modelling framework. The period of study spans a week in summer of 2007 (12-18 July), when continuous LIDAR measurements and a limited set of balloon profiles were collected in the frame of the ASI/QUITSAT project. LIDAR observations show a diurnal development of an aerosol plume that lifts early morning surface emissions to the top of the boundary layer, reaching maximum concentration around midday. Mountain breeze from Alps clean the bottom of the aerosol layer, typically leaving a residual layer at around 1500-2000 m which may survive for several days. During the last two days under analysis, a dust layer transported from Sahara reaches the upper layers of Milan area and affects the aerosol vertical distribution in the boundary layer. Simulation from the MM5/CHIMERE modelling system, carried out at 1 km horizontal resolution, qualitatively reproduced the general features of the Milan aerosol layer observed with LIDAR, including the rise and fall of the aersol plume, the residual layer in altitude and the Saharan dust event. The simulation highlighted the importance of nitrates and secondary organics in its composition. Several sensitivity tests showed that main driving factors leading to the dominance of nitrates in the plume are temperature and gas absorption process. A modelling study turn to the analysis of the vertical aerosol profiles distribution and knowledge of the characterization of the PM at a site near the city of Milan is performed using a model system composed by a meteorological model MM5 (V3-6), the mesoscale model from PSU/NCAR and a Chemical Transport Model (CTM) CHIMERE to simulate the vertical aerosol profile. LiDAR continuous observations and balloon profiles collected during two intensive campaigns in summer 2007 and in winter 2008 in the frame of the ASI/QUITSAT project have been used to perform comparisons in order to evaluate the ability of the aerosol chemistry transport model CHIMERE to simulate the aerosols dynamics and compositions in this area. The comparisons of model aerosols with measurements are carried out over a full time period between 12 July 2007 and 18 July 2007. The comparisons demonstrate the ability of the model to reproduce correctly the aerosol vertical distributions and their temporal variability. As detected by the LiDAR, the model during the period considered, predicts a diurnal development of a plume during the morning and a clearing during the afternoon, typically the plume reaches the top of the boundary layer around mid day, in this time CHIMERE produces highest concentrations in the upper levels as detected by LiDAR. The model, moreover can reproduce LiDAR observes enhancement aerosols concentrations above the boundary layer, attributing the phenomena to dust out intrusion. Another important information from the model analysis regard the composition , it predicts that a large part of the plume is composed by nitrate, in particular during 13 and 16 July 2007 , pointing to the model tendency to overestimates the nitrous component in the particular matter vertical structure . Sensitivity study carried out in this work show that there are a combination of different factor which determine the major nitrous composition of the “plume” observed and in particular humidity temperature and the absorption phenomena are the mainly candidate to explain the principal difference in composition simulated in the period object of this study , in particular , the CHIMERE model seems to be mostly sensitive to the absorption process.