998 resultados para STRETCHING MODES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrotalcites of formula Mg6 (Fe,Al)2(OH)16(CO3).4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d-spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (a) brucite layer OH stretching vibrations (b) water stretching bands and (c) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2- symmetric stretching bands suggest that different types of (CO3)2- exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the 2 Raman bands at around 3600 cm-1, attributed to Mg-OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite-like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm-1, indicating the water is strongly hydrogen bonded to both the interlayer anions and the brucite-like surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tellurates are rare minerals as the tellurate anion is readily reduced to the tellurite ion. Often minerals with both tellurate and tellurite anions in the mineral are found. An example of such a mineral containing tellurate and tellurite is yecoraite. Raman spectroscopy has been used to study this mineral, the exact structure of which is unknown. Two Raman bands at 796 and 808 cm-1 are assigned to the ν1 (TeO4)2- symmetric and ν3 (TeO3)2- antisymmetric stretching modes and Raman bands at 699 cm-1 are attributed to the the ν3 (TeO4)2- antisymmetric stretching mode and the band at 690 cm-1 to the ν1 (TeO3)2- symmetric stretching mode. The intense band at 465 cm-1 with a shoulder at 470 cm-1 is assigned the (TeO4)2- and (TeO3)2- bending modes. Prominent Raman bands are observed at 2878, 2936, 3180 and 3400 cm-1. The band at 3936 cm-1 appears quite distinct and the observation of multiple bands indicates the water molecules in the yecoraite structure are not equivalent. The values for the OH stretching vibrations listed provide hydrogen bond distances of 2.625 Å (2878 cm-1), 2.636 Å (2936 cm-1), 2.697 Å (3180 cm-1) and 2.798 Å (3400 cm-1). This range of hydrogen bonding contributes to the stability of the mineral. A comparison of the Raman spectra of yecoraite with that of tellurate containing minerals kuranakhite, tlapallite and xocomecatlite is made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate, hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm-1 are assigned to the 1 (AsO4)3- symmetric stretching and 3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp band at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2- units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8\[O8](OH)5\[(SO4)4].25H2O; however Raman spectroscopy does not detect any hydroxyl units. Raman bands at 805 and 810 cm-1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm-1 are assigned to the (SO4)2- symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm-1 are assigned to the (SO4)2- ν2 bending modes. The bands at 210 and 279 cm-1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selected arsenite minerals leiteite, reinerite and cafarsite have been studied by Raman spectroscopy. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. The Raman spectrum of leiteite shows bands at 804 and 763 cm-1 assigned to the As2O42- symmetric and antisymmetric stretching modes. The most intense Raman band of leiteite is the band at 457 cm-1 and is assigned to the ν2 As2O42- bending mode. A comparison of the Raman spectrum of leiteite is made with the arsenite minerals reinerite and cafarsite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2•2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm-1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm-1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm-1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm-1 and at 417, 434 and 482 cm-1 are assigned to the SO42- 4 and 2 bending modes, respectively. Raman bands at 337 and 373 cm-1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopy of the mineral partzite Cu2Sb2(O,OH)7 complimented with infrared spectroscopy were studied and related to the structure of the mineral. The Raman spectrum shows some considerable complexity with a number of overlapping bands observed at 479, 520, 594, 607 and 620 cm-1 with additional low intensity bands found at 675, 730, 777 and 837 cm-1. Raman bands of partzite in the spectral region 590 to 675 cm-1 are attributable the ν1 symmetric stretching modes. The Raman bands at 479 and 520 cm-1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 1396 and 1455 cm-1 are attributed to SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and OH units is found. Raman bands are observed at 3266, 3376, 3407, 3563, 3586 and 3622 cm-1. The first three bands are assigned to water stretching vibrations. The three higher wavenumber bands are assigned to the stretching vibrations of the OH units. It is proposed that based upon observation of the Raman spectra that water is involved in the structure of partzite. Thus the formula Cu2Sb2(O,OH)7 may be better written as Cu2Sb2(O,OH)7 •xH2O

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mixed anion mineral dixenite has been studied by Raman spectroscopy, complimented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm-1 assigned to the (AsO3)3- symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm-1 and is assigned to the ν2 AsO33- bending mode. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands at 1026 and 1057 cm-1 are assigned to the SiO42- symmetric stretching vibrations and at 1349 and 1386 cm-1 to the SiO42- antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6•xH2O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12•4H2O (2:1 Ga-HT) to Mg8Ga2(CO3)(OH)20•4H2O (4:1 Ga-HT) have been successfully synthesised and characterized by X-ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16•4H2O. Raman bands observed at around 1046, 1048 and 1058 cm-1 were attributed to the symmetric stretching modes of the (CO32-) units. Multiple ν3 CO32- antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm-1. The splitting of this mode indicates the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm-1 assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The macerals in bituminous coals with varying organic sulfur content from the Early Permian Greta Coal Measures at three locations (Southland Colliery, Drayton Colliery and the Cranky Corner Basin), in and around the Sydney Basin (Australia), have been studied using light-element electron microprobe (EMP) analysis and micro-ATR–FTIR. Electron microprobe analysis of individual macerals reveals that the vitrinite in both the Cranky Corner Basin and Drayton Colliery (Puxtrees seam) samples have similar carbon contents (ca. 78% C in telocollinite), suggesting that they are of equivalent rank. However, the Cranky Corner coals have anomalously low vitrinite reflectance (down to 0.45%) vs. the Drayton materials (ca. 0.7%). They also have very high organic S content (3–6.5%) and lower O content (ca. 10%) than the equivalent macerals in the Drayton sample (0.7% S and 15.6% O). A study was carried out to investigate the impacts of the high organic S on the functional groups of the macerals in these two otherwise iso-rank, stratigraphically-equivalent seams. An iso-rank low-S coal from the overlying Wittingham Coal Measures near Muswellbrook and coals of slightly higher rank from the Greta Coal Measures at Southland Colliery near Cessnock were also evaluated using the same techniques to extend the data set. Although the telocollinite in the Drayton and Cranky Corner coals have very similar carbon content (ca.78% C), the ATR–FTIR spectra of the vitrinite and inertinite macerals in these respectively low S and high S coals show some distinct differences in IR absorbance from various aliphatic and aromatic functional groups. The differences in absorbance of the aliphatic stretching bands (2800–3000 cm−1) and the aromatic carbon (CC) peak at 1606 cm−1 are very obvious. Compared to that of the Drayton sample (0.7% S and 15% O), the telocollinite of the Cranky Corner coal (6% S and 10% O) clearly shows: (i) less absorbance from OH groups, represented by a broad region around 3553 cm−1, (ii) much stronger aliphatic C–H absorbance (stretching modes around 3000–2800 cm−1 and bending modes around 1442 cm−1) and (iii) less absorbance from aromatic carbon functional groups (peaking at 1606 cm−1). Evaluation of the iso-rank Drayton and Cranky Corner coals shows that: (i) the aliphatic C–H absorbances decrease with increasing oxygen content but increase with increasing organic S content and (ii) the aromatic H to aliphatic H ratio (Har/Hali) for the telocollinite increases with (organic) O%, but decreases progressively with increasing organic S. The high organic S content in the maceral appears to be accompanied by a greater proportion of aliphatic functional groups, possibly as a result of some of the O within maceral ring structures in the high S coal samples being replaced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The removal of toxic anions has been achieved using hydrotalcite via two methods: (1) coprecipitation and (2) thermal activation. Hydrotalcite formed via the coprecipitation method, using solutions containing arsenate and vanadate up to pH 10, are able to remove more than 95% of the toxic anions (0.2 M) from solution. The removal of toxic anions in solutions with a pH of >10 reduces the removal uptake percentage to 75%. Raman spectroscopy observed multiple A1 stretching modes of V−O and As−O at 930 and 810 cm−1, assigned to vanadate and arsenate, respectively. Analysis of the intensity and position of the A1 stretching modes helped to identify the vanadate and arsenate specie intercalated into the hydrotalcite structure. It has been determined that 3:1 hydrotalcite structure predominantly intercalate anions into the interlayer region, while the 2:1 and 4:1 hydrotalcite structures shows a large portion of anions being removed from solution by adsorption processes. Treatment of carbonate solutions (0.2 M) containing arsenate and vanadate (0.2 M) three times with thermally activated hydrotalcite has been shown to remove 76% and 81% of the toxic anions, respectively. Thermally activated hydrotalcite with a Mg:Al ratio of 2:1, 3:1, and 4:1 have all been shown to remove 95% of arsenate and vanadate (25 ppm). At increased concentrations of arsenate and vanadate, the removal uptake percentage decreased significantly, except for the 4:1 thermally activated hydrotalcite. Thermally activated Bayer hydrotalcite has also been shown to be highly effective in the removal of arsenate and vanadate. The thermal activation of the solid residue component (red mud) removes 30% of anions from solution (100 ppm of both anions), while seawater-neutralized red mud removes 70%. The formation of hydrotalcite during the seawater neutralization process removes anions via two mechanisms, rather than one observed for thermally activated red mud.