78 resultados para STRANGENESS
Resumo:
The usual particle emission scenario used in hydrodynamics presupposes that particles instantaneously stop interacting (freeze-out) once they reach some three-dimensional surface. Another formalism has recently been developed where particle emission occurs continuously during the whole expansion of thermalized matter. Here we compare both mechanisms in a simplified hydrodynamical framework and show that they lead to a drastically different interpretation of data.
Resumo:
We compare the results obtained by using the continuous emission model with data from Ph-Ph collisions. We determine the initial conditions necessary to reproduce the strange particle ratios (experiment WA97) and with the obtained results, we study the dependence on particle mass of the inverse slope parameter T. Some particle spectra are also shown.
Resumo:
We use a version of the meson cloud model, including the kaon and the K-* contributions, to estimate the electric and magnetic strange form factors of the nucleon. We compare our results with the recent measurements of the strange quark contribution to parity-violating asymmetries in the forward G0 electron-proton scattering experiment. We conclude that it is very important to determine experimentally the electric and magnetic strange form factors, and not only the combination G(E)(s)+eta G(M)(s), if one does really intend to understand the strangeness of the nucleon.
Resumo:
We show that a hadron gas model with continuous particle emission instead of freeze-out may solve some of the problems (high values of the freeze-out density and specific net charge) that one encounters in the latter case when studying strange particle ratios such as those from the experiment WA85. This underlines the necessity to understand better particle emission in hydrodynamics to be able to analyze data. It also reopens the possibility of a quark-hadron transition occurring with phase equilibrium instead of explosively.
Resumo:
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions.
Resumo:
We propose a phenomenological approach based in the meson cloud model to obtain the strange quark structure function inside a kaon, considering the strange quark asymmetry inside the nucleon. © 2009 American Institute of Physics.
Resumo:
We report new STAR measurements of midrapidity yields for the Lambda, (Lambda) over bar, K-S(0), Xi(-), (Xi) over bar (+), Omega(-), (Omega) over bar (+) particles in Cu + Cu collisions at root s(NN) = 200 GeV, and midrapidity yields for the Lambda, (Lambda) over bar, K-S(0) particles in Au + Au at root s(NN) = 200 GeV. We show that, at a given number of participating nucleons, the production of strange hadrons is higher in Cu + Cu collisions than in Au + Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parametrization based on the fraction of participants that undergo multiple collisions.
Resumo:
Im Rahmen des A4-Experiments werden die Beiträge des Strange-Quarks zu den elektromagnetischen Formfaktoren des Protons gemessen. Solche Seequarkeffekte bei Niederenergieobservablen sind für das Verständnis der Hadronenstruktur wichtig, denn sie stellen eine direkte Manifestation der QCD-Freiheitsgrade im nichtperturbativen Bereich dar.rnrnLinearkombinationen der Strangeness-Vektorformfaktoren des Protons $G_E^s$ und $G_M^s$ sind experimentell über die Messung der paritätsverletzenden Asymmetrie im Wirkungsquerschnitt der elastischen Streuung longitudinal polarisierter Elektronen an unpolarisierten Nukleonen zugänglich. Vor dieser Arbeit hatte die A4-Kollaboration zwei solche Messungen unter Vorwärtsstreuwinkeln bei den Viererimpulsübertägen $Q^2$ von jeweils 0.23 und 0.10 (GeV/c)$^2$ veröffentlicht. Um die Separation von $G_E^s$ und $G_M^s$ beim höheren $Q^2$-Wert zu erhalten, wurde eine Messung unter Rückwärtswinkeln mit der Strahlenergie von 315 MeV durchgeführt.rnrnIm A4-Experiment werden die an einem Flüssigwasserstoff-Target gestreuten Elektronen eines longitudinal polarisierten Strahls mit einem Cherenkov-Kalorimeter einzeln gezählt. Durch die kalorimetrische Energiemessung erfolgt die Trennung der elastischen von den inelastischen Ereignissen. Bei Rückwärtswinkeln wurde dieses Apparat mit einem Szintillator als Elektronentagger erweitert, um den $\gamma$-Untergrund aus dem $\pi^0$-Zerfall zu unterdrücken.rnrnUm die Auswertung dieser Messung zu ermöglichen, wurden im Rahmen dieser Arbeit die gemessenen Energiespektren anhand von ausführlichen Simulationen der Streuprozesse und des Antwortverhaltens der Detektoren untersucht, und eine Methode zur Behandlung des restlichen Untergrunds aus der $\gamma$-Konversionrnvor dem Szintillator entwickelt. Die Simulationergebnisse sind auf dem 5%-Niveau mit den Messungen verträglich, und es wurde bewiesen, dass die Methode der Untergrundbehandlung anwendbar ist.rnrnDie Asymmetriemessung bei Rückwärtswinkeln, die man nach Anwendung der hier erarbeiteten Untergrundbehandlung erhält, wurde für die Separation von $G_E^s$ und $G_M^s$ bei $Q^2$=0.22 (GeV/c)^2 mit der Vorwärtswinkelmessung beim selbenrn$Q^2$ kombiniert. Es ergeben sich die Werte:rnrn$G_M^s$= -0.14 ± 0.11_{exp} ± 0.11_{theo} undrn$G_E^s$= 0.050 ± 0.038_{exp} ± 0.019_{theo}, rnrnwobei die systematische Unsicherheit wegen der Untergrundbehandlung im experimentellen Fehler enthalten ist. Am Ende der Arbeit werden die aus diesen Resultaten folgenden Rückschlüsse auf den Einfluss der Strangeness auf die statischen elektromagnetischen Eigenschaften des Protons diskutiert.rn
Resumo:
The filamentary model of the metal-insulator transition in randomly doped semiconductor impurity bands is geometrically equivalent to similar models for continuous transitions in dilute antiferromagnets and even to the λ transition in liquid He, but the critical behaviors are different. The origin of these differences lies in two factors: quantum statistics and the presence of long range Coulomb forces on both sides of the transition in the electrical case. In the latter case, in addition to the main transition, there are two satellite transitions associated with disappearance of the filamentary structure in both insulating and metallic phases. These two satellite transitions were first identified by Fritzsche in 1958, and their physical origin is explained here in geometrical and topological terms that facilitate calculation of critical exponents.