988 resultados para STOCHASTIC MODELING
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Lower partial moments plays an important role in the analysis of risks and in income/poverty studies. In the present paper, we further investigate its importance in stochastic modeling and prove some characterization theorems arising out of it. We also identify its relationships with other important applied models such as weighted and equilibrium models. Finally, some applications of lower partial moments in poverty studies are also examined
Resumo:
In questo elaborato, abbiamo tentato di modellizzare i processi che regolano la presenza dei domini proteici. I domini proteici studiati in questa tesi sono stati ottenuti dai genomi batterici disponibili nei data base pubblici (principalmente dal National Centre for Biotechnology Information: NCBI) tramite una procedura di simulazione computazionale. Ci siamo concentrati su organismi batterici in quanto in essi la presenza di geni trasmessi orizzontalmente, ossia che parte del materiale genetico non provenga dai genitori, e assodato che sia presente in una maggiore percentuale rispetto agli organismi più evoluti. Il modello usato si basa sui processi stocastici di nascita e morte, con l'aggiunta di un parametro di migrazione, usato anche nella descrizione dell'abbondanza relativa delle specie in ambito delle biodiversità ecologiche. Le relazioni tra i parametri, calcolati come migliori stime di una distribuzione binomiale negativa rinormalizzata e adattata agli istogrammi sperimentali, ci induce ad ipotizzare che le famiglie batteriche caratterizzate da un basso valore numerico del parametro di immigrazione abbiano contrastato questo deficit con un elevato valore del tasso di nascita. Al contrario, ipotizziamo che le famiglie con un tasso di nascita relativamente basso si siano adattate, e in conseguenza, mostrano un elevato valore del parametro di migrazione. Inoltre riteniamo che il parametro di migrazione sia direttamente proporzionale alla quantità di trasferimento genico orizzontale effettuato dalla famiglia batterica.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.
Resumo:
Minimizing the makespan of a flow-shop no-wait (FSNW) schedule where the processing times are randomly distributed is an important NP-Complete Combinatorial Optimization Problem. In spite of this, it can be found only in very few papers in the literature. By considering the Start Interval Concept, this problem can be formulated, in a practical way, in function of the probability of the success in preserve FSNW constraints for all tasks execution. With this formulation, for the particular case with 3 machines, this paper presents different heuristics solutions: by integrating local optimization steps with insertion procedures and by using genetic algorithms for search the solution space. Computational results and performance evaluations are commented. Copyright (C) 1998 IFAC.
Resumo:
In this work, we study the performance evaluation of resource-aware business process models. We define a new framework that allows the generation of analytical models for performance evaluation from business process models annotated with resource management information. This framework is composed of a new notation that allows the specification of resource management constraints and a method to convert a business process specification and its resource constraints into Stochastic Automata Networks (SANs). We show that the analysis of the generated SAN model provides several performance indices, such as average throughput of the system, average waiting time, average queues size, and utilization rate of resources. Using the BP2SAN tool - our implementation of the proposed framework - and a SAN solver (such as the PEPS tool) we show through a simple use-case how a business specialist with no skills in stochastic modeling can easily obtain performance indices that, in turn, can help to identify bottlenecks on the model, to perform workload characterization, to define the provisioning of resources, and to study other performance related aspects of the business process.
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon, Portugal.