930 resultados para STIMULATED RAMAN-SCATTERING
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.
Resumo:
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.
Resumo:
Cu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.
Resumo:
In this paper we present the Raman scattering of self-assembled InSb dots grown on (001) oriented InP substrates. The samples were grown by pulsed molecular beam epitaxy mode. Two types of samples have been investigated. In one type the InSb dots were capped with 200 monolayers of InP; in the other type no capping was deposited after the InSb dot formation. We observe two peaks in the Raman spectra of the uncapped dot, while only one peak is observed in the Raman spectra of the capped dots. In the case of the uncapped dots the peaks are attributed to LO-like and TO-like vibration of completely relaxed InSb dots, in agreement with high resolution transmission electron microscopy photographs. The Raman spectra of the capped dot suggest a different strain state in the dot due to the capping layer.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
sublattices ferrimagnet Cu2OSeO3 with a cubic symmetry and a linear magnetoelectric effect. There is no spectroscopic evidence for structural lattice distortions below T-C=60 K, which are expected due to magnetoelectric coupling. Using symmetry arguments we explain this observation by considering a special type of ferrimagnetic ground state which does not generate a spontaneous electric polarization. Interestingly, Raman scattering shows a strong increase of electric polarization of media through a dynamic magnetoelectric effect as a remarkable enhancement of the scattering intensity below T-C. New lines of purely magnetic origin have been detected in the magnetically ordered state. A part of them are attributed as scattering on exchange magnons. Using this observation and further symmetry considerations we argue for strong Dzyaloshinskii-Moriya interaction existing in the Cu2OSeO3. (c) 2010 American Institute of Physics. [doi:10.1063/1.3455808]
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
This review deals with surface-enhancved Raman scattering (SERS) employing Langmuir-Blodgett (LB) films, which serve as model systems for developing theoretical and experimental studies to elucidate the SERS effect. In addition, LB films have be used as integral parts of molecular architectures for SERS-active substrates. On the other hand, SERS and surface-enhaced resonant Raman scattering (SERRS) have allowed various properties of LB films to be investigated, especially those associated with molecular-level interactions. In the paper, emphasis is placed on single molecule detection (SMD), where the target molecule is diluted on an LB matrix of spectral silent material (low Raman cross section). The perspectives and challenges for combining SERS and LB films are also discussed.