8 resultados para STERNITES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Richards gland in the epiponine wasp Metapolybia docilis occurs at the anterior side of the 5(th) abdominal sternite, and is formed by approx. 360 secretory cells. The cells discharge their secretory products through accompanying duct cells into a reservoir that is formed by the invaginated intersegmental membrane between the 4(th) and 5(th) sternites. The ultrastructural characteristics of the secretory cells are indicative for the production of a non-proteinaceous secretion, which is in line with the trail substance that is used by these wasps during their swarm-founding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foram estudadas a ocorrência e a morfologia de glândulas tegumentares presentes no abdome de fêmeas de Melissoptila richardiae. Os resultados mostram que nesta espécie, células glandulares da classe III são encontradas de duas formas: isoladas nos tergitos e esternitos III e IV e formando um aglomerado de unidades glandulares bilateralmente, entre os segmentos III e IV, os quais liberam seu produto de secreção em um reservatório originado a partir da membrana intersegmental. Os resultados sugerem que o produto secretado é lipídico e, provavelmente volátil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navas, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navas 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2-8 usually with microtholi, male genitalia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identified; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species are described. Titanochrysa circumfusa (Burmeister, 1939) comb. nov. is recorded for the first time from Venezuela.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Richards' gland is known for the majority of Epiponini wasps, and despite few experimental evidences, the taxonomic distribution in swarm-founder species and the function of this gland remain rather unclear. This work presents a morphological description of Richards' gland in Protonectarina sylveirae. The gland is formed by a cluster of class 3 cells underneath the anterior margin of the fifth metasomal sternite, and a reservoir formed by the intersegmental membrane between the fourth and fifth metasomal sternites where the secretion can be stored. The secretory cells contain a branched end apparatus that carries the secretory products towards the duct cell. Externally, the cuticle of the sternite, where the duct cells penetrate, is characterized by modifications as scales with very numerous pores. The presence of Richards' gland according to the model proposed by Samacá et al. 2013 in Protonectarina corroborates the single origin of this gland in Epiponini. The occurrence of a Golgi apparatus and smooth endoplasmic reticulum suggests pheromone production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Podochela meloi Sankarankutty, Ferreira & Cunha, 2001, originally described in the Inachidae MacLeay, 1838, was recently transferred to the Inachoididae genus Inachoides H. Milne Edwards & Lucas, 1842, based upon overall similarities. Placement of P. meloi in both Inachoididae and Inachoides is found to be supported by a number of synapomorphies as shown herein. Podochela meloi is shown to be a junior synonym of Inachoides forceps A. Milne-Edwards, 1879.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages.