18 resultados para STEREOSCOPY
Resumo:
Esta dissertação apresenta um aperfeiçoamento para o Sistema de Imagens Tridimensional Híbrido (SITH) que é utilizado para obtenção de uma superfície tridimensional do relevo de uma determinada região a partir de dois aerofotogramas consecutivos da mesma. A fotogrametria é a ciência e tecnologia utilizada para obter informações confiáveis a partir de imagens adquiridas por sensores. O aperfeiçoamento do SITH consistirá na automatização da obtenção dos pontos através da técnica de Transformada de Características Invariantes a Escala (SIFT - Scale Invariant Feature Transform) dos pares de imagens estereoscópicas obtidos por câmeras aéreas métricas, e na utilização de técnicas de interpolação por splines cúbicos para suavização das superfícies tridimensionais obtidas pelo mesmo, proporcionando uma visualização mais clara dos detalhes da área estudada e auxiliando em prevenções contra deslizamentos em locais de risco a partir de um planejamento urbano adequado. Os resultados computacionais mostram que a incorporação destes métodos ao programa SITH apresentaram bons resultados.
Resumo:
Esta tese propôs uma metodologia para detecção de áreas susceptíveis a deslizamentos de terra a partir de imagens aéreas, culminando no desenvolvimento de uma ferramenta computacional, denominada SASD/T, para testar a metodologia. Para justificar esta pesquisa, um levantamento sobre os desastres naturais da história brasileira relacionada a deslizamentos de terra e as metodologias utilizadas para a detecção e análise de áreas susceptíveis a deslizamentos de terra foi realizado. Estudos preliminares de visualização 3D e conceitos relacionados ao mapeamento 3D foram realizados. Estereoscopia foi implementada para visualizar tridimensionalmente a região selecionada. As altitudes foram encontradas através de paralaxe, a partir dos pontos homólogos encontrados pelo algoritmo SIFT. Os experimentos foram realizados com imagens da cidade de Nova Friburgo. O experimento inicial mostrou que o resultado obtido utilizando SIFT em conjunto com o filtro proposto, foi bastante significativo ao ser comparado com os resultados de Fernandes (2008) e Carmo (2010), devido ao número de pontos homólogos encontrados e da superfície gerada. Para detectar os locais susceptíveis a deslizamentos, informações como altitude, declividade, orientação e curvatura foram extraídas dos pares estéreos e, em conjunto com as variáveis inseridas pelo usuário, forneceram uma análise de quão uma determinada área é susceptível a deslizamentos. A metodologia proposta pode ser estendida para a avaliação e previsão de riscos de deslizamento de terra de qualquer outra região, uma vez que permite a interação com o usuário, de modo que este especifique as características, os itens e as ponderações necessárias à análise em questão.
Resumo:
A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.
Resumo:
PURPOSE: Mammography is known to be one of the most difficult radiographic exams to interpret. Mammography has important limitations, including the superposition of normal tissue that can obscure a mass, chance alignment of normal tissue to mimic a true lesion and the inability to derive volumetric information. It has been shown that stereomammography can overcome these deficiencies by showing that layers of normal tissue lay at different depths. If standard stereomammography (i.e., a single stereoscopic pair consisting of two projection images) can significantly improve lesion detection, how will multiview stereoscopy (MVS), where many projection images are used, compare to mammography? The aim of this study was to assess the relative performance of MVS compared to mammography for breast mass detection. METHODS: The MVS image sets consisted of the 25 raw projection images acquired over an arc of approximately 45 degrees using a Siemens prototype breast tomosynthesis system. The mammograms were acquired using a commercial Siemens FFDM system. The raw data were taken from both of these systems for 27 cases and realistic simulated mass lesions were added to duplicates of the 27 images at the same local contrast. The images with lesions (27 mammography and 27 MVS) and the images without lesions (27 mammography and 27 MVS) were then postprocessed to provide comparable and representative image appearance across the two modalities. All 108 image sets were shown to five full-time breast imaging radiologists in random order on a state-of-the-art stereoscopic display. The observers were asked to give a confidence rating for each image (0 for lesion definitely not present, 100 for lesion definitely present). The ratings were then compiled and processed using ROC and variance analysis. RESULTS: The mean AUC for the five observers was 0.614 +/- 0.055 for mammography and 0.778 +/- 0.052 for multiview stereoscopy. The difference of 0.164 +/- 0.065 was statistically significant with a p-value of 0.0148. CONCLUSIONS: The differences in the AUCs and the p-value suggest that multiview stereoscopy has a statistically significant advantage over mammography in the detection of simulated breast masses. This highlights the dominance of anatomical noise compared to quantum noise for breast mass detection. It also shows that significant lesion detection can be achieved with MVS without any of the artifacts associated with tomosynthesis.
Resumo:
De nos jours, les logiciels doivent continuellement évoluer et intégrer toujours plus de fonctionnalités pour ne pas devenir obsolètes. C'est pourquoi, la maintenance représente plus de 60% du coût d'un logiciel. Pour réduire les coûts de programmation, les fonctionnalités sont programmées plus rapidement, ce qui induit inévitablement une baisse de qualité. Comprendre l’évolution du logiciel est donc devenu nécessaire pour garantir un bon niveau de qualité et retarder le dépérissement du code. En analysant à la fois les données sur l’évolution du code contenues dans un système de gestion de versions et les données quantitatives que nous pouvons déduire du code, nous sommes en mesure de mieux comprendre l'évolution du logiciel. Cependant, la quantité de données générées par une telle analyse est trop importante pour être étudiées manuellement et les méthodes d’analyses automatiques sont peu précises. Dans ce mémoire, nous proposons d'analyser ces données avec une méthode semi automatique : la visualisation. Eyes Of Darwin, notre système de visualisation en 3D, utilise une métaphore avec des quartiers et des bâtiments d'une ville pour visualiser toute l'évolution du logiciel sur une seule vue. De plus, il intègre un système de réduction de l'occlusion qui transforme l'écran de l'utilisateur en une fenêtre ouverte sur la scène en 3D qu'il affiche. Pour finir, ce mémoire présente une étude exploratoire qui valide notre approche.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The human visual ability to perceive depth looks like a puzzle. We perceive three-dimensional spatial information quickly and efficiently by using the binocular stereopsis of our eyes and, what is mote important the learning of the most common objects which we achieved through living. Nowadays, modelling the behaviour of our brain is a fiction, that is why the huge problem of 3D perception and further, interpretation is split into a sequence of easier problems. A lot of research is involved in robot vision in order to obtain 3D information of the surrounded scene. Most of this research is based on modelling the stereopsis of humans by using two cameras as if they were two eyes. This method is known as stereo vision and has been widely studied in the past and is being studied at present, and a lot of work will be surely done in the future. This fact allows us to affirm that this topic is one of the most interesting ones in computer vision. The stereo vision principle is based on obtaining the three dimensional position of an object point from the position of its projective points in both camera image planes. However, before inferring 3D information, the mathematical models of both cameras have to be known. This step is known as camera calibration and is broadly describes in the thesis. Perhaps the most important problem in stereo vision is the determination of the pair of homologue points in the two images, known as the correspondence problem, and it is also one of the most difficult problems to be solved which is currently investigated by a lot of researchers. The epipolar geometry allows us to reduce the correspondence problem. An approach to the epipolar geometry is describes in the thesis. Nevertheless, it does not solve it at all as a lot of considerations have to be taken into account. As an example we have to consider points without correspondence due to a surface occlusion or simply due to a projection out of the camera scope. The interest of the thesis is focused on structured light which has been considered as one of the most frequently used techniques in order to reduce the problems related lo stereo vision. Structured light is based on the relationship between a projected light pattern its projection and an image sensor. The deformations between the pattern projected into the scene and the one captured by the camera, permits to obtain three dimensional information of the illuminated scene. This technique has been widely used in such applications as: 3D object reconstruction, robot navigation, quality control, and so on. Although the projection of regular patterns solve the problem of points without match, it does not solve the problem of multiple matching, which leads us to use hard computing algorithms in order to search the correct matches. In recent years, another structured light technique has increased in importance. This technique is based on the codification of the light projected on the scene in order to be used as a tool to obtain an unique match. Each token of light is imaged by the camera, we have to read the label (decode the pattern) in order to solve the correspondence problem. The advantages and disadvantages of stereo vision against structured light and a survey on coded structured light are related and discussed. The work carried out in the frame of this thesis has permitted to present a new coded structured light pattern which solves the correspondence problem uniquely and robust. Unique, as each token of light is coded by a different word which removes the problem of multiple matching. Robust, since the pattern has been coded using the position of each token of light with respect to both co-ordinate axis. Algorithms and experimental results are included in the thesis. The reader can see examples 3D measurement of static objects, and the more complicated measurement of moving objects. The technique can be used in both cases as the pattern is coded by a single projection shot. Then it can be used in several applications of robot vision. Our interest is focused on the mathematical study of the camera and pattern projector models. We are also interested in how these models can be obtained by calibration, and how they can be used to obtained three dimensional information from two correspondence points. Furthermore, we have studied structured light and coded structured light, and we have presented a new coded structured light pattern. However, in this thesis we started from the assumption that the correspondence points could be well-segmented from the captured image. Computer vision constitutes a huge problem and a lot of work is being done at all levels of human vision modelling, starting from a)image acquisition; b) further image enhancement, filtering and processing, c) image segmentation which involves thresholding, thinning, contour detection, texture and colour analysis, and so on. The interest of this thesis starts in the next step, usually known as depth perception or 3D measurement.
Resumo:
Resumo: A história do cinema tem sido feita de enormes avanços tecnológicos devido em grande parte à tecnologia ajudar a vender filmes e permitir conceber novas estéticas narrativas. Apesar de assistimos a um período de um entusiasmo absurdo sobre novos filmes em estereoscopia não são novidade nenhuma, parece-se verificar que com a mesma velocidade com que ressurgiram certamente irão atenuar ou desaparecer. É neste contexto que entendemos a reintrodução da estereoscopia nas salas de cinema, como mais um processo alternativo, obsoleta nos seus princípios, mas que demonstra um enorme potencial criativo para a construção de uma linguagem própria, requerendo uma análise muito mais cuidada do que simplesmente dizer que a televisão e cinema do futuro serão em S3D1. Assim, pretendemos neste trabalho contextualizar a estereoscopia historicamente, tentar justificar nesta tecnologia o paradigma diferente que os filmes em estereoscopia sugere para a tradição narrativa nos filmes ou como permite criar conteúdos alternativos para vanguarda do cinema.
Resumo:
A história do cinema tem sido feita de enormes avanços tecnológicos devido em grande parte à tecnologia ajudar a vender filmes e permitir conceber novas estéticas narrativas. Apesar de assistimos a um período de um entusiasmo absurdo sobre novos filmes em estereoscopia não são novidade nenhuma, parece-se verificar que com a mesma velocidade com que ressurgiram certamente irão atenuar ou desaparecer. É neste contexto que entendemos a reintrodução da estereoscopia nas salas de cinema, como mais um processo alternativo, obsoleta nos seus princípios, mas que demonstra um enorme potencial criativo para a construção de uma linguagem própria, requerendo uma análise muito mais cuidada do que simplesmente dizer que a televisão e cinema do futuro serão em S3D3. Assim, pretendemos neste trabalho contextualizar a estereoscopia historicamente, tentar justificar nesta tecnologia o paradigma diferente que os filmes em estereoscopia sugere para a tradição narrativa nos filmes ou como permite criar conteúdos alternativos para vanguarda do cinema.
Resumo:
Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change